ﻻ يوجد ملخص باللغة العربية
Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III (SDSS-III), is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2,403 giant stars in twelve fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity([Fe/H]$le-1.7$), including two that are very metal-poor [Fe/H]$sim-2.1$ by bulge standards. Luminosity-based distance estimates place the five stars within the outer bulge, where other 1,246 of the analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the $alpha$-elements O, Mg, and Si without significant $alpha$-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly-identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.
We present a novel analysis of the metal-poor star sample in the complete Radial Velocity Experiment (RAVE) Data Release 5 catalog with the goal of identifying and characterizing all very metal-poor stars observed by the survey. Using a three-stage m
We present the first results of the EMBLA survey (Extremely Metal-poor BuLge stars with AAOmega), aimed at finding metal-poor stars in the Milky Way bulge, where the oldest stars should now preferentially reside. EMBLA utilises SkyMapper photometry t
Chemistry and kinematic studies can determine the origins of stellar population across the Milky Way. The metallicity distribution function of the bulge indicates that it comprises multiple populations, the more metal-poor end of which is particularl
Cosmological models predict the oldest stars in the Galaxy should be found closest to the centre of the potential well, in the bulge. The EMBLA Survey successfully searched for these old, metal-poor stars by making use of the distinctive SkyMapper ph
Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of consi