ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine the effect of nuclear response functions, as laid out in [Fitzpatrick et al, arXiv:1203.3542], on dark matter (DM) direct detection in the context of well-motivated UV completions, including electric and magnetic dipoles, anapole, spin-orb it, and pseudoscalar-mediated DM. Together, these encompass five of the six nuclear responses extracted from the non-relativistic effective theory of [Fitzpatrick et al, arXiv:1203.3542] (with the sixth difficult to UV complete), with two of the six combinations corresponding to standard spin-independent and -dependent responses. For constraints from existing direct detection experiments, we find that only the COUPP constraint, due to its heavy iodine target with large angular momentum and an unpaired spin, and its large energy range sensitivity, is substantially modified by the new responses compared to what would be inferred using the standard form factors to model the energy dependence of the response. For heavy targets such as xenon and germanium, the behavior of the new nuclear responses as recoil energy increases can be substantially different than that of the standard responses, but this has almost no impact on the constraints derived from experiments such as LUX, XENON100 and CDMS since the maximum nuclear recoil energy detected in these experiments is relatively low. We simulate mock data for 80 and 250 GeV DM candidates utilizing the new nuclear responses to highlight how they might affect a putative signal, and find the new responses are most important for momentum-suppressed interactions such as the magnetic dipole or pseudoscalar-mediated interaction when the target is relatively heavy (such as xenon and iodine).
We consider flavor constraints on, and collider signatures of, Asymmetric Dark Matter (ADM) via higher dimension operators. In the supersymmetric models we consider, R-parity violating (RPV) operators carrying B-L interact with n dark matter (DM) par ticles X through an interaction of the form W = X^n O_{B-L}, where O_{B-L} = q l d^c, u^c d^c d^c, l l e^c. This interaction ensures that the lightest ordinary supersymmetric particle (LOSP) is unstable to decay into the X sector, leading to a higher multiplicity of final state particles and reduced missing energy at a collider. Flavor-violating processes place constraints on the scale of the higher dimension operator, impacting whether the LOSP decays promptly. While the strongest limitations on RPV from n-bar{n} oscillations and proton decay do not apply to ADM, we analyze the constraints from meson mixing, mu-e conversion, mu -> 3 e and b -> s l^+ l^-. We show that these flavor constraints, even in the absence of flavor symmetries, allow parameter space for prompt decay to the X sector, with additional jets and leptons in exotic flavor combinations. We study the constraints from existing 8 TeV LHC SUSY searches with (i) 2-6 jets plus missing energy, and (ii) 1-2 leptons, 3-6 jets plus missing energy, comparing the constraints on ADM-extended supersymmetry with the usual supersymmetric simplified models.
We carry out a comprehensive analysis of models for top A_{FB} at CDF in light of new top data arriving from the LHC. We begin with a careful Tevatron analysis, considering in general which sets of effective vertices give rise to a large forward-back ward asymmetry while suppressing the contribution to the total t tbar cross-section. We show on general grounds that scalar models struggle to produce sufficient asymmetries consistent with CDF observations, while vector models can produce a large asymmetry with a less significant tension in the total cross-section and $tbar{t}$ invariant mass distribution at the Tevatron. We examine the essential observables of these models for top physics at LHC7 with 1 fb^{-1} of data, including the total cross-section, invariant mass distribution and number of additional jets in t tbar events. In the case of t-channel mediators, the LHC total cross-section places a strong constraint on light mediators, while the Tevatron invariant mass distributions place strong constraints on heavy mediators that are able to produce the asymmetry. Heavy axigluons are becoming increasingly squeezed by LHC7 t tbar and dijet resonance searches. We conclude that LHC7 top analyses are rapidly closing the window for viable models of the CDF top A_{FB}.
CDF has observed a top forward-backward asymmetry discrepant with the Standard Model prediction at 3.4 sigma. We analyze models that could generate the asymmetry, including flavor-violating Ws, horizontal Z_Hs, triplet and sextet diquarks, and axiglu ons. We consider the detailed predictions of these models for the invariant mass and rapidity distributions of the asymmetry at the parton level, comparing against the unfolded parton-level CDF results. While all models can reproduce the asymmetry with the appropriate choice of mass and couplings, it appears at first examination that the extracted parton-level invariant mass distribution for all models are in conflict with Tevatron observations. We show on closer examination, however, that t tbar events in Z_H and W models have considerably lower selection efficiencies in high invariant mass bins as compared to the Standard Model, so that W, Z_H, and axigluon models can generate the observed asymmetry while being consistent with the total cross-section and invariant mass spectrum. Triplet and sextet models have greater difficulty producing the observed asymmetry while remaining consistent with the total cross-section and invariant mass distribution. To more directly match the models and the CDF results, we proceed to decay and reconstruct the tops, comparing our results against the raw CDF asymmetry and invariant mass distributions. We find that the models that successfully generate the corrected CDF asymmetry at the parton level reproduce very well the more finely binned uncorrected asymmetry. Finally, we discuss the early LHC reach for discovery of these models, based on our previous analysis [arXiv:1102.0018].
We study new top flavor violating resonances that are singly produced in association with a top at the LHC. Such top flavor violating states could be responsible for the Tevatron top forward-backward asymmetry. Since top flavor violating states can d irectly decay to a top (or anti-top) and jet, and are produced in conjunction with another (oppositely charged) top, the direct signature of such states is a t j (or tbar j) resonance in t tbar j events. In general, these states can be very light and have O(1) couplings to the top sector so that they are copiously produced. We present a search strategy and estimate the discovery potential at the early LHC by implementing the strategy on simulated data. For example, with 1 fb^-1 at 7 TeV, we estimate that a W coupling to d_R tbar_R can be constrained at the 3 sigma level for g_R = 1 and m_W = 200 GeV, weakening to g_R = 1.75 for m_W = 600 GeV. With the search we advocate here, a bound at a similar level could be obtained for top flavor violating Zs, as well as triplet and sextet diquarks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا