ترغب بنشر مسار تعليمي؟ اضغط هنا

Currently, there are about 3 dozen known super-Earth (M < 10 MEarth), of which 8 are transiting planets suitable for atmospheric follow-up observations. Some of the planets are exposed to extreme temperatures as they orbit close to their host stars, e.g., CoRot-7b, and all of these planets have equilibrium temperatures significantly hotter than the Earth. Such planets can develop atmospheres through (partial) vaporization of their crustal and/or mantle silicates. We investigated the chemical equilibrium composition of such heated systems from 500 - 4000 K and total pressures from 10-6 to 10+2 bars. The major gases are H2O and CO2 over broad temperature and pressure ranges, and Na, K, O2, SiO, and O at high temperatures and low pressures. We discuss the differences in atmospheric composition arising from vaporization of SiO2-rich (i.e., felsic) silicates (like Earths continental crust) and MgO-, FeO-rich (i.e., mafic) silicates like the bulk silicate Earth. The computational results will be useful in planning spectroscopic studies of the atmospheres of Earth-like exoplanets.
252 - Katharina Lodders 2010
Representative abundances of the chemical elements for use as a solar abundance standard in astronomical and planetary studies are summarized. Updated abundance tables for solar system abundances based on meteorites and photospheric measurements are presented.
We use thermochemical equilibrium calculations to model iron, magnesium, and silicon chemistry in the atmospheres of giant planets, brown dwarfs, extrasolar giant planets (EGPs), and low-mass stars. The behavior of individual Fe-, Mg-, and Si-bearing gases and condensates is determined as a function of temperature, pressure, and metallicity. Our results are thus independent of any particular model atmosphere. The condensation of Fe metal strongly affects iron chemistry by efficiently removing Fe-bearing species from the gas phase. Monatomic Fe is the most abundant Fe-bearing gas throughout the atmospheres of EGPs and L dwarfs and in the deep atmospheres of giant planets and T dwarfs. Mg- and Si-bearing gases are effectively removed from the atmosphere by forsterite (Mg2SiO4) and enstatite (MgSiO3) cloud formation. Monatomic Mg is the dominant magnesium gas throughout the atmospheres of EGPs and L dwarfs and in the deep atmospheres of giant planets and T dwarfs. Silicon monoxide (SiO) is the most abundant Si-bearing gas in the deep atmospheres of brown dwarfs and EGPs, whereas SiH4 is dominant in the deep atmosphere of Jupiter and other gas giant planets. Several other Fe-, Mg-, and Si-bearing gases become increasingly important with decreasing effective temperature. In principle, a number of Fe, Mg, and Si gases are potential tracers of weather or diagnostic of temperature in substellar atmospheres.
330 - Katharina Lodders 2009
The terrestrial and gas-giant planets in our solar system may represent some prototypes for planets around other stars; the exoplanets because most stars have similar overall elemental abundances as our sun. The solar system planets represent at leas t four chemical planet types, depending on the phases that make them: Terrestrial-like planets made of rock (metal plus silicates), Plutonian planets made of rock and ice, Neptunian giant planets of rocky, icy with low H and He contents, and Jovian gas-giant planets of rocky, icy planets with near-solar H and He contents. The planetary compositions are linked to the chemical fractionation in the planetary accretion disks. Chemical tracers of these fractionations are described. Many known exoplanets are gas-giant planets with up to several Jupiter-masses and their atmospheric chemistry is compared to that of brown dwarfs. Exoplanets in close orbits around their host stars may resemble hot brown dwarfs (L-dwarfs). Planets receiving less radiation form their host may compare more to the methane-rich T dwarfs. The cloud layers resulting from condensation of oxides, metal, sulfides, and salts in these hot and cool gas giant planets and their chemical tracers are described.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا