ترغب بنشر مسار تعليمي؟ اضغط هنا

SnTe, an archetypical topological crystalline insulator, often shows a transition from a highly symmetric cubic phase to a rhombohedral structure at low temperatures. In order to achieve the highly symmetric cubic phase at low temperatures suitable f or quantum behaviour, we have employed the modified Bridgman method to grow a high-quality single-crystalline sample of SnTe. Analysis of the crystal structure using Laue diffraction and rocking curve measurements show a very high degree of single crystallinity of the sample. Resistivity and the specific heat data do not show the signature of structural transition down to the lowest temperature studied. The magnetic susceptibility shows diamagnetic behaviour. All these properties manifest the behaviour of a typical bulk semiconductor with conducting surface states as expected in a topological material. Detailed powder x-ray diffraction measurements show cubic structure in the whole temperature range studied.
We have investigated the magnetic, dielectric and magnetodielectric (MDE) behavior of a geometrically frustrated spin-chain system, Ca3Co1.4Rh0.6O6, in the single crystalline form for different orientations. The results bring out that the magnetic be havior of this compound is by itself interesting in the sense that this compound exhibits an anisotropic glassy-like magnetic behavior with a huge frequency dependence of ac susceptibility peak for an orientation along the spin-chain in the range 30-60 K; this behavior is robust to applications of large external magnetic fields (H) unlike in canonical spin-glasses. The temperature dependence of dielectric constant also shows strong frequency dependence with similar robustness to H. The isothermal H-dependent dielectric results at low temperatures establishes anisotropic MDE coupling. It is intriguing to note that there is a step roughly at one-third of saturation values as in the case of isothermal magnetization curves for same temperatures (for orientation along spin-chain), a correlation hitherto unrealized for geometrically frustrated systems.
The polycrystalline form of the compound, Tb5Si3, crystallizing in Mn5Si3-type hexagonal structure, which was earlier believe to order antiferromagnetically below 69 K, has been recently reported by us to exhibit interesting magnetoresistance (MR) an omalies. In order to understand the magnetic anomalies of this compound better, we synthesized single crystals of this compound and subjected them to intense magnetization and MR studies. The results reveal that the magnetic behavior is strongly anisotropic as the easy axis is along a basal plane. There appear to be multiple magnetic features in the close vicinity of 70 K. In addition, there are multiple steps in isothermal magnetization (which could not be resolved in the data for polycrystalline data) for magnetic-field (H) along a basal plane. The sign of MR is positive in the magnetically ordered state, and, interestingly, the magnitude dramatically increases at the initial step for H parallel to basal plane, but decreases at subsequent steps as though the origin of these steps are different. However, for the perpendicular orientation (H || [0 0 0 1]), there is no evidence for any step either in M(H) or in MR(H). These results establish this compound is an interesting magnetic material.
We have investigated the magnetic behavior of ball-milled fine particles of well-known Kondo lattices, CeAu2Si2, CePd2Si2 and CeAl2, by magnetization and heat-capacity studies in order to understand the magnetic behavior when the particle size is red uced. These compounds have been known to order antiferromagnetically in the bulk form near (TN=) 10, 10 and 3.8 K respectively. We find that the features due to magnetic ordering get suppressed to temperatures below 1.8 K in the case of fine particles of ternary alloys, though trivalence of Ce as inferred from the effective moment remains unchanged. In contrast to this, in CeAl2, there appears to be a marginal enhancement of TN, when the particle size is reduced to less than a micron. These results can be consistently understood by proposing that there is relatively more 4f-localization as the particle size is reduced, resulting in weakening of exchange interaction strength.
Recently, we reported an anomalous enhancement of the positive magnetoresistance beyond a critical magnetic field in Tb5Si3 in the magnetically ordered state, attributable to inverse metamagnetism. This results in unusual magnetic hysteresis loops fo r the pressurized specimens, which are relevant to the topic of electronic phase separation. In this paper, we report the influence of small substitutions of Lu for Tb, to show the evolution of these magnetic anomalies. We find that, at low temperatures, the high-field high-resistivity phase could be partially stabilized on returning the magnetic field to zero in many of these Lu substituted alloys, as measured through the electrical resistivity ({rho}). Also, the relative fractions of this phase and the virgin phase appear to be controlled by a small tuning of the composition and temperature. Interestingly, at 1.8 K a sudden switch-over of the value of {rho} for this mixed phase to that for the virgin phase for some compositions is observed at low fields after a few field cycles, indicating metastability of this mixed phase.
The magnetic behavior of the quaternary compounds, RCr2Si2C (R = La, Ce), has been investigated by magnetization (M) and heat-capacity (C) measurements (1.8-300 K) in the bulk polycrystals and nano forms (<1 {mu}m) obtained by high-energy balling. Ou r finding is that Cr appears to exhibit magnetic ordering of an itinerant type at low temperatures (<20 K) in the bulk form, as inferred from a combined look at all the data. The magnetic ordering gets gradually suppressed with increasing milling time. Evidence for a mixed-valence state of Ce for the bulk form is obtained from the tendency of magnetic susceptibility to exhibit a maximum above 300 K. However, this feature vanishes in the nano form, which exhibits a Curie-Weiss behavior above 200 K as though Ce tends towards trivalency in these fine particles; in addition, there is a weak upturn in C/T below 10 K in the bulk, which becomes very prominent in the milled Ce-based specimens at lower temperatures, as though heavy-fermion behavior gets stronger in smaller particles.
We present magnetic characterization of a binary rare-earth intermetallic compound Er5Si3, crystallizing in Mn5Si3-type hexagonal structure, through magnetization, heat-capacity, electrical resistivity, and magnetoresistance measurements. Our investi gations confirm that the compound exhibits two magnetic transitions with decreasing temperature, first one at 35 K and the second one at 15 K. The present results reveal that the second magnetic transition is a disorder-broadened first-order transition, as shown by thermal hysteresis in the measured data. Another important finding is that, below 15 K, there is a magnetic-field-induced transition with a hysteretic effect with the electrical resistance getting unusually enhanced at this transition and the magnetorsistance (MR) is found to exhibit intriguing magnetic-field dependence indicating novel magnetic phase-co-existence phenomenon. It thus appears that this compound is characterized by interesting magnetic anomalies in the temperature-magnetic-field phase diagram.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا