ترغب بنشر مسار تعليمي؟ اضغط هنا

Calibration of neural networks is a critical aspect to consider when incorporating machine learning models in real-world decision-making systems where the confidence of decisions are equally important as the decisions themselves. In recent years, the re is a surge of research on neural network calibration and the majority of the works can be categorized into post-hoc calibration methods, defined as methods that learn an additional function to calibrate an already trained base network. In this work, we intend to understand the post-hoc calibration methods from a theoretical point of view. Especially, it is known that minimizing Negative Log-Likelihood (NLL) will lead to a calibrated network on the training set if the global optimum is attained (Bishop, 1994). Nevertheless, it is not clear learning an additional function in a post-hoc manner would lead to calibration in the theoretical sense. To this end, we prove that even though the base network ($f$) does not lead to the global optimum of NLL, by adding additional layers ($g$) and minimizing NLL by optimizing the parameters of $g$ one can obtain a calibrated network $g circ f$. This not only provides a less stringent condition to obtain a calibrated network but also provides a theoretical justification of post-hoc calibration methods. Our experiments on various image classification benchmarks confirm the theory.
Calibrating neural networks is of utmost importance when employing them in safety-critical applications where the downstream decision making depends on the predicted probabilities. Measuring calibration error amounts to comparing two empirical distri butions. In this work, we introduce a binning-free calibration measure inspired by the classical Kolmogorov-Smirnov (KS) statistical test in which the main idea is to compare the respective cumulative probability distributions. From this, by approximating the empirical cumulative distribution using a differentiable function via splines, we obtain a recalibration function, which maps the network outputs to actual (calibrated) class assignment probabilities. The spine-fitting is performed using a held-out calibration set and the obtained recalibration function is evaluated on an unseen test set. We tested our method against existing calibration approaches on various image classification datasets and our spline-based recalibration approach consistently outperforms existing methods on KS error as well as other commonly used calibration measures.
Neural network quantization has become increasingly popular due to efficient memory consumption and faster computation resulting from bitwise operations on the quantized networks. Even though they exhibit excellent generalization capabilities, their robustness properties are not well-understood. In this work, we systematically study the robustness of quantized networks against gradient based adversarial attacks and demonstrate that these quantized models suffer from gradient vanishing issues and show a fake sense of security. By attributing gradient vanishing to poor forward-backward signal propagation in the trained network, we introduce a simple temperature scaling approach to mitigate this issue while preserving the decision boundary. Despite being a simple modification to existing gradient based adversarial attacks, experiments on CIFAR-10/100 datasets with VGG-16 and ResNet-18 networks demonstrate that our temperature scaled attacks obtain near-perfect success rate on quantized networks while outperforming original attacks on adversarially trained models as well as floating-point networks.
Quantizing large Neural Networks (NN) while maintaining the performance is highly desirable for resource-limited devices due to reduced memory and time complexity. It is usually formulated as a constrained optimization problem and optimized via a mod ified version of gradient descent. In this work, by interpreting the continuous parameters (unconstrained) as the dual of the quantized ones, we introduce a Mirror Descent (MD) framework for NN quantization. Specifically, we provide conditions on the projections (i.e., mapping from continuous to quantized ones) which would enable us to derive valid mirror maps and in turn the respective MD updates. Furthermore, we present a numerically stable implementation of MD that requires storing an additional set of auxiliary variables (unconstrained), and show that it is strikingly analogous to the Straight Through Estimator (STE) based method which is typically viewed as a trick to avoid vanishing gradients issue. Our experiments on CIFAR-10/100, TinyImageNet, and ImageNet classification datasets with VGG-16, ResNet-18, and MobileNetV2 architectures show that our MD variants obtain quantized networks with state-of-the-art performance. Code is available at https://github.com/kartikgupta-at-anu/md-bnn.
We present a new approach for a single view, image-based object pose estimation. Specifically, the problem of culling false positives among several pose proposal estimates is addressed in this paper. Our proposed approach targets the problem of inacc urate confidence values predicted by CNNs which is used by many current methods to choose a final object pose prediction. We present a network called CullNet, solving this task. CullNet takes pairs of pose masks rendered from a 3D model and cropped regions in the original image as input. This is then used to calibrate the confidence scores of the pose proposals. This new set of confidence scores is found to be significantly more reliable for accurate object pose estimation as shown by our results. Our experimental results on multiple challenging datasets (LINEMOD and Occlusion LINEMOD) reflects the utility of our proposed method. Our overall pose estimation pipeline outperforms state-of-the-art object pose estimation methods on these standard object pose estimation datasets. Our code is publicly available on https://github.com/kartikgupta-at-anu/CullNet.
In this work, we address a challenging problem of fine-grained and coarse-grained recognition of object manipulation actions. Due to the variations in geometrical and motion constraints, there are different manipulations actions possible to perform d ifferent sets of actions with an object. Also, there are subtle movements involved to complete most of object manipulation actions. This makes the task of object manipulation action recognition difficult with only just the motion information. We propose to use grasp and motion-constraints information to recognise and understand action intention with different objects. We also provide an extensive experimental evaluation on the recent Yale Human Grasping dataset consisting of large set of 455 manipulation actions. The evaluation involves a) Different contemporary multi-class classifiers, and binary classifiers with one-vs-one multi- class voting scheme, b) Differential comparisons results based on subsets of attributes involving information of grasp and motion-constraints, c) Fine-grained and Coarse-grained object manipulation action recognition based on fine-grained as well as coarse-grained grasp type information, and d) Comparison between Instance level and Sequence level modeling of object manipulation actions. Our results justifies the efficacy of grasp attributes for the task of fine-grained and coarse-grained object manipulation action recognition.
Lexical states provide a powerful mechanism to scan regular expressions in a context sensitive manner. At the same time, lexical states also make it hard to reason about the correctness of the grammar. We first categorize the related correctness issu es into two classes: errors and warnings, and then present a context sensitive and a context insensitive analysis to identify errors and warnings in context-free-grammars (CFGs). We also present a comparative study of these analyses. A standalone tool (LSA) has also been implemented by us that can identify errors and warnings in JavaCC grammars. The LSA tool outputs a graph that depicts the grammar and the error transitions. It can also generates counter example strings that can be used to establish the errors. We have used LSA to analyze a host of open-source JavaCC grammar files to good effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا