ترغب بنشر مسار تعليمي؟ اضغط هنا

88 - Karthik Sasihithlu 2018
When two objects made of a material which supports surface modes are brought in close proximity to each other such that the vacuum gap between them is less than the thermal wavelength of radiation, then the coupling between the surface modes provides an important channel for the heat transfer to occur which is different from that mediated by long range propagating electromagnetic waves. Indeed, the heat transfer then exceeds Plancks blackbody limit by several orders of magnitude, and consequently has been used for several energy applications such as near-field thermophotovoltaic systems. This near-field radiative heat exchange has been traditionally and successfully described using fluctuational electrodynamics principles. Here, we describe an alternate coupled harmonic oscillator model approach which can be used to model the coupling between surface modes and hence the resultant near-field heat transfer. We apply this theory to estimate the near-field heat transfer for the configurations of two metallic nanoparticles and two planar metal surfaces and compare the result with predictions from fluctuational electrodynamics theory.
The dynamic heat transfer between two half-spaces separated by a vacuum gap due to coupling of their surface modes is modelled using the theory that describes the dynamic energy transfer between two coupled harmonic oscillators each separately connec ted to a heat bath and with the heat baths maintained at different temperatures. The theory is applied for the case when the two surfaces are made up of a polar crystal which supports surface polaritons that can be excited at room temperature and the predicted heat transfer is compared with the steady state heat transfer value calculated from standard fluctuational electrodynamics theory. It is observed that for small time intervals the value of heat flux can reach as high as 1.5 times that of steady state value.
Phonons (collective atomic vibrations in solids) are more effective in transporting heat than photons. This is the reason why the conduction mode of heat transport in nonmetals (mediated by phonons) is dominant compared to the radiation mode of heat transport (mediated by photons). However, since phonons are unable to traverse a vacuum gap (unlike photons) it is commonly believed that two bodies separated by a gap cannot exchange heat via phonons. Recently, a mechanism was proposed by which phonons can transport heat across a vacuum gap - through Van der Waals interaction between two bodies with gap less than wavelength of light. Such heat transfer mechanisms are highly relevant for heating (and cooling) of nanostructures; the heating of the flying heads in magnetic storage disks is a case in point. Here, the theoretical derivation for modeling phonon transmission is revisited and extended to the case of two bodies made of different materials separated by a vacuum gap. Magnitudes of phonon transmission, and hence the heat transfer, for commonly used materials in the micro and nano-electromechanical industry are calculated and compared with the calculation of conduction heat transfer through air for small gaps.
In order for surface scattering models to be accurate they must necessarily satisfy energy conservation and reciprocity principles. Roughness scattering models based on Kirchoffs approximation or perturbation theory do not satisfy these criteria in a ll frequency ranges. Here we present a surface scattering model based on analysis of scattering from a layer of particles on top of a substrate in the dipole approximation which satisfies both energy conservation and reciprocity and is thus accurate in all frequency ranges. The model takes into account the absorption in the substrate induced by the particles but does not take into account the near-field interactions between the particles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا