ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic near-field heat transfer between macroscopic surfaces

342   0   0.0 ( 0 )
 نشر من قبل Karthik Sasihithlu Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamic heat transfer between two half-spaces separated by a vacuum gap due to coupling of their surface modes is modelled using the theory that describes the dynamic energy transfer between two coupled harmonic oscillators each separately connected to a heat bath and with the heat baths maintained at different temperatures. The theory is applied for the case when the two surfaces are made up of a polar crystal which supports surface polaritons that can be excited at room temperature and the predicted heat transfer is compared with the steady state heat transfer value calculated from standard fluctuational electrodynamics theory. It is observed that for small time intervals the value of heat flux can reach as high as 1.5 times that of steady state value.

قيم البحث

اقرأ أيضاً

Extreme near-field heat transfer between metallic surfaces is a subject of debate as the state-of-the-art theory and experiments are in disagreement on the energy carriers driving heat transport. In an effort to elucidate the physics of extreme near- field heat transfer between metallic surfaces, this Letter presents a comprehensive model combining radiation, acoustic phonon and electron transport across sub-10-nm vacuum gaps. The results obtained for gold surfaces show that in the absence of bias voltage, acoustic phonon transport is dominant for vacuum gaps smaller than ~2 nm. The application of a bias voltage significantly affects the dominant energy carriers as it increases the phonon contribution mediated by the long-range Coulomb force and the electron contribution due to a lower potential barrier. For a bias voltage of 0.6 V, acoustic phonon transport becomes dominant at a vacuum gap of 5 nm, whereas electron tunneling dominates at sub-1-nm vacuum gaps. The comparison of the theory against experimental data from the literature suggests that well-controlled measurements between metallic surfaces are needed to quantify the contributions of acoustic phonon and electron as a function of the bias voltage.
81 - Anh D. Phan , The-Long Phan , 2013
The radiative heat transfer between gold nanoparticle layers is presented using the coupled dipole method. Gold nanoparticles are modelled as effective electric and magnetic dipoles interacting via electromagnetic fluctuations. The effect of higher-o rder multipoles is implemented in the expression of electric polarizability to calculate the interactions at short distances. Our findings show that the near-field radiation reduces as the radius of the nanoparticles is increased. Also, the magnetic dipole contribution to the heat exchange becomes more important for larger particles. When one layer is displayed in parallel with respect to the other layer, the near-field heat transfer exhibits oscillatory-like features due to the influence of the individual nanostructures. Further details about the effect of the nanoparticles size are also discussed.
88 - Karthik Sasihithlu 2018
When two objects made of a material which supports surface modes are brought in close proximity to each other such that the vacuum gap between them is less than the thermal wavelength of radiation, then the coupling between the surface modes provides an important channel for the heat transfer to occur which is different from that mediated by long range propagating electromagnetic waves. Indeed, the heat transfer then exceeds Plancks blackbody limit by several orders of magnitude, and consequently has been used for several energy applications such as near-field thermophotovoltaic systems. This near-field radiative heat exchange has been traditionally and successfully described using fluctuational electrodynamics principles. Here, we describe an alternate coupled harmonic oscillator model approach which can be used to model the coupling between surface modes and hence the resultant near-field heat transfer. We apply this theory to estimate the near-field heat transfer for the configurations of two metallic nanoparticles and two planar metal surfaces and compare the result with predictions from fluctuational electrodynamics theory.
We study the interplay of conductive and radiative heat transfer (RHT) in planar geometries and predict that temperature gradients induced by radiation can play a significant role on the behavior of RHT with respect to gap sizes, depending largely on geometric and material parameters and not so crucially on operating temperatures. Our findings exploit rigorous calculations based on a closed-form expression for the heat flux between two plates separated by vacuum gaps $d$ and subject to arbitrary temperature profiles, along with an approximate but accurate analytical treatment of coupled conduction--radiation in this geometry. We find that these effects can be prominent in typical materials (e.g. silica and sapphire) at separations of tens of nanometers, and can play an even larger role in metal oxides, which exhibit moderate conductivities and enhanced radiative properties. Broadly speaking, these predictions suggest that the impact of RHT on thermal conduction, and vice versa, could manifest itself as a limit on the possible magnitude of RHT at the nanoscale, which asymptotes to a constant (the conductive transfer rate when the gap is closed) instead of diverging at short separations.
189 - Lixin Ge , Ke Gong , Yuping Cang 2018
Near-field radiative heat transfer (NFRHT) is strongly related with many applications such as near-field imaging, thermos-photovoltaics and thermal circuit devices. The active control of NFRHT is of great interest since it provides a degree of tunabi lity by external means. In this work, a magnetically tunable multi-band NFRHT is revealed in a system of two suspended graphene sheets at room temperature. It is found that the single-band spectra for B=0 split into multi-band spectra under an external magnetic field. Dual-band spectra can be realized for a modest magnetic field (e.g., B=4 T). One band is determined by intra-band transitions in the classical regime, which undergoes a blue shift as the chemical potential increases. Meanwhile, the other band is contributed by inter-Landau-level transitions in the quantum regime, which is robust against the change of chemical potentials. For a strong magnetic field (e.g., B=15 T), there is an additional band with the resonant peak appearing at near-zero frequency (microwave regime), stemming from the magneto-plasmon zero modes. The great enhancement of NFRHT at such low frequency has not been found in any previous systems yet. This work may pave a way for multi-band thermal information transfer based on atomically thin graphene sheets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا