ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph neural networks (GNNs), which learn the node representations by recursively aggregating information from its neighbors, have become a predominant computational tool in many domains. To handle large-scale graphs, most of the existing methods par tition the input graph into multiple sub-graphs (e.g., through node clustering) and apply batch training to save memory cost. However, such batch training will lead to label bias within each batch, and then result in over-confidence in model predictions. Since the connected nodes with positively related labels tend to be assigned together, the traditional cross-entropy minimization process will attend on the predictions of biased classes in the batch, and may intensify the overfitting issue. To overcome the label bias problem, we propose the adaptive label smoothing (ALS) method to replace the one-hot hard labels with smoothed ones, which learns to allocate label confidences from the biased classes to the others. Specifically, ALS propagates node labels to aggregate the neighborhood label distribution in a pre-processing step, and then updates the optimal smoothed labels online to adapt to specific graph structure. Experiments on the real-world datasets demonstrate that ALS can be generally applied to the main scalable learning frameworks to calibrate the biased labels and improve generalization performances.
Training deep graph neural networks (GNNs) is notoriously hard. Besides the standard plights in training deep architectures such as vanishing gradients and overfitting, the training of deep GNNs also uniquely suffers from over-smoothing, information squashing, and so on, which limits their potential power on large-scale graphs. Although numerous efforts are proposed to address these limitations, such as various forms of skip connections, graph normalization, and random dropping, it is difficult to disentangle the advantages brought by a deep GNN architecture from those tricks necessary to train such an architecture. Moreover, the lack of a standardized benchmark with fair and consistent experimental settings poses an almost insurmountable obstacle to gauging the effectiveness of new mechanisms. In view of those, we present the first fair and reproducible benchmark dedicated to assessing the tricks of training deep GNNs. We categorize existing approaches, investigate their hyperparameter sensitivity, and unify the basic configuration. Comprehensive evaluations are then conducted on tens of representative graph datasets including the recent large-scale Open Graph Benchmark (OGB), with diverse deep GNN backbones. Based on synergistic studies, we discover the combo of superior training tricks, that lead us to attain the new state-of-the-art results for deep GCNs, across multiple representative graph datasets. We demonstrate that an organic combo of initial connection, identity mapping, group and batch normalization has the most ideal performance on large datasets. Experiments also reveal a number of surprises when combining or scaling up some of the tricks. All codes are available at https://github.com/VITA-Group/Deep_GCN_Benchmarking.
Graph neural networks (GNNs) integrate deep architectures and topological structure modeling in an effective way. However, the performance of existing GNNs would decrease significantly when they stack many layers, because of the over-smoothing issue. Node embeddings tend to converge to similar vectors when GNNs keep recursively aggregating the representations of neighbors. To enable deep GNNs, several methods have been explored recently. But they are developed from either techniques in convolutional neural networks or heuristic strategies. There is no generalizable and theoretical principle to guide the design of deep GNNs. To this end, we analyze the bottleneck of deep GNNs by leveraging the Dirichlet energy of node embeddings, and propose a generalizable principle to guide the training of deep GNNs. Based on it, a novel deep GNN framework -- EGNN is designed. It could provide lower and upper constraints in terms of Dirichlet energy at each layer to avoid over-smoothing. Experimental results demonstrate that EGNN achieves state-of-the-art performance by using deep layers.
Detecting statistical interactions between input features is a crucial and challenging task. Recent advances demonstrate that it is possible to extract learned interactions from trained neural networks. It has also been observed that, in neural netwo rks, any interacting features must follow a strongly weighted connection to common hidden units. Motivated by the observation, in this paper, we propose to investigate the interaction detection problem from a novel topological perspective by analyzing the connectivity in neural networks. Specially, we propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology. Based on this measure, a Persistence Interaction detection~(PID) algorithm is developed to efficiently detect interactions. Our proposed algorithm is evaluated across a number of interaction detection tasks on several synthetic and real world datasets with different hyperparameters. Experimental results validate that the PID algorithm outperforms the state-of-the-art baselines.
Graph neural networks (GNNs), which learn the representation of a node by aggregating its neighbors, have become an effective computational tool in downstream applications. Over-smoothing is one of the key issues which limit the performance of GNNs a s the number of layers increases. It is because the stacked aggregators would make node representations converge to indistinguishable vectors. Several attempts have been made to tackle the issue by bringing linked node pairs close and unlinked pairs distinct. However, they often ignore the intrinsic community structures and would result in sub-optimal performance. The representations of nodes within the same community/class need be similar to facilitate the classification, while different classes are expected to be separated in embedding space. To bridge the gap, we introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN). It normalizes nodes within the same group independently to increase their smoothness, and separates node distributions among different groups to significantly alleviate the over-smoothing issue. Experiments on real-world datasets demonstrate that DGN makes GNN models more robust to over-smoothing and achieves better performance with deeper GNNs.
Graph neural networks (GNN) has been demonstrated to be effective in classifying graph structures. To further improve the graph representation learning ability, hierarchical GNN has been explored. It leverages the differentiable pooling to cluster no des into fixed groups, and generates a coarse-grained structure accompanied with the shrinking of the original graph. However, such clustering would discard some graph information and achieve the suboptimal results. It is because the node inherently has different characteristics or roles, and two non-isomorphic graphs may have the same coarse-grained structure that cannot be distinguished after pooling. To compensate the loss caused by coarse-grained clustering and further advance GNN, we propose a multi-channel graph convolutional networks (MuchGCN). It is motivated by the convolutional neural networks, at which a series of channels are encoded to preserve the comprehensive characteristics of the input image. Thus, we define the specific graph convolutions to learn a series of graph channels at each layer, and pool graphs iteratively to encode the hierarchical structures. Experiments have been carefully carried out to demonstrate the superiority of MuchGCN over the state-of-the-art graph classification algorithms.
Graph neural networks (GNN) has been successfully applied to operate on the graph-structured data. Given a specific scenario, rich human expertise and tremendous laborious trials are usually required to identify a suitable GNN architecture. It is bec ause the performance of a GNN architecture is significantly affected by the choice of graph convolution components, such as aggregate function and hidden dimension. Neural architecture search (NAS) has shown its potential in discovering effective deep architectures for learning tasks in image and language modeling. However, existing NAS algorithms cannot be directly applied to the GNN search problem. First, the search space of GNN is different from the ones in existing NAS work. Second, the representation learning capacity of GNN architecture changes obviously with slight architecture modifications. It affects the search efficiency of traditional search methods. Third, widely used techniques in NAS such as parameter sharing might become unstable in GNN. To bridge the gap, we propose the automated graph neural networks (AGNN) framework, which aims to find an optimal GNN architecture within a predefined search space. A reinforcement learning based controller is designed to greedily validate architectures via small steps. AGNN has a novel parameter sharing strategy that enables homogeneous architectures to share parameters, based on a carefully-designed homogeneity definition. Experiments on real-world benchmark datasets demonstrate that the GNN architecture identified by AGNN achieves the best performance, comparing with existing handcrafted models and tradistional search methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا