ترغب بنشر مسار تعليمي؟ اضغط هنا

398 - Krishna Kumar , Kai Sun , 2015
We study the nearest neighbor $XXZ$ Heisenberg quantum antiferromagnet on the kagome lattice. Here we consider the effects of several perturbations: a) a chirality term, b) a Dzyaloshinski-Moriya term, and c) a ring-exchange type term on the bowties of the kagome lattice, and inquire if they can suppport chiral spin liquids as ground states. The method used to study these Hamiltonians is a flux attachment transformation that maps the spins on the lattice to fermions coupled to a Chern-Simons gauge field on the kagome lattice. This transformation requires us to consistently define a Chern-Simons term on the kagome lattice. We find that the chirality term leads to a chiral spin liquid even in the absence of an uniform magnetic field, with an effective spin Hall conductance of $sxy = frac{1}{2}$ in the regime of $XY$ anisotropy. The Dzyaloshinkii-Moriya term also leads a similar chiral spin liquid but only when this term is not too strong. An external magnetic field also has the possibility of giving rise to additional plateaus which also behave like chiral spin liquids in the $XY$ regime. Finally, we consider the effects of a ring-exchange term and find that, provided its coupling constant is large enough, it may trigger a phase transition into a chiral spin liquid by the spontaneous breaking of time-reversal invariance.
234 - Junjian Qi , Kai Sun , 2014
In this paper, we compare four measures of the empirical observability gramian, including the determinant, the trace, the minimum eigenvalue, and the condition number, which can be used to quantify the observability of system states and to obtain the optimal PMU placement for power system dynamic state estimation. An adaptive optimal PMU placement method is proposed by automatically choosing proper measures as the objective function. It is shown that when the number of PMUs is small and thus the observability is very weak, the minimum eigenvalue and the condition number are better measures of the observability and are preferred to be chosen as the objective function. The effectiveness of the proposed method is validated by performing dynamic state estimation on an Northeast Power Coordinating Council (NPCC) 48-machine 140-bus system with the square-root unscented Kalman filter.
Frustrated spin systems on Kagome lattices have long been considered to be a promising candidate for realizing exotic spin liquid phases. Recently, there has been a lot of renewed interest in these systems with the discovery of materials such as Volb orthite and Herbertsmithite that have Kagome like structures. In the presence of an external magnetic field, these frustrated systems can give rise to magnetization plateaus of which the plateau at $m=frac{1}{3}$ is considered to be the most prominent. Here we study the problem of the antiferromagnetic spin-1/2 quantum XXZ Heisenberg model on a Kagome lattice by using a Jordan-Wigner transformation that maps the spins onto a problem of fermions coupled to a Chern-Simons gauge field. This mapping relies on being able to define a consistent Chern-Simons term on the lattice. Using a recently developed method to rigorously extend the Chern-Simons term to the frustrated Kagome lattice we can now formalize the Jordan-Wigner transformation on the Kagome lattice. We then discuss the possible phases that can arise at the mean-field level from this mapping and focus specifically on the case of $frac{1}{3}$-filling ($m=frac{1}{3}$ plateau) and analyze the effects of fluctuations in our theory. We show that in the regime of $XY$ anisotropy the ground state at the $1/3$ plateau is equivalent to a bosonic fractional quantum Hall Laughlin state with filling fraction $1/2$ and that at the $5/9$ plateau it is equivalent to the first bosonic Jain daughter state at filling fraction $2/3$.
The Kibble-Zurek mechanism (KZM) captures the key physics in the non-equilibrium dynamics of second-order phase transitions, and accurately predict the density of the topological defects formed in this process. However, despite much effort, the verac ity of the central prediction of KZM, i.e., the scaling of the density production and the transit rate, is still an open question. Here, we performed an experiment, based on a nine-stage optical interferometer with an overall fidelity up to 0.975$pm$0.008, that directly supports the central prediction of KZM in quantum non-equilibrium dynamics. In addition, our work has significantly upgraded the number of stages of the optical interferometer to nine with a high fidelity, this technique can also help to push forward the linear optical quantum simulation and computation.
We study the transport properties of the Kondo insulator SmB$_6$ with a specialized configuration designed to distinguish bulk-dominated conduction from surface-dominated conduction. We find that as the material is cooled below 4 K, it exhibits a cro ssover from bulk to surface conduction with a fully insulating bulk. We take the robustness and magnitude of the surface conductivity, as is manifest in the literature of SmB$_6$, to be strong evidence for the topological insulator metallic surface states recently predicted for this material.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا