ترغب بنشر مسار تعليمي؟ اضغط هنا

The vertical shear instability (VSI) offers a potential hydrodynamic mechanism for angular momentum transport in protoplanetary disks (PPDs). The VSI is driven by a weak vertical gradient in the disks orbital motion, but must overcome vertical buoyan cy, a strongly stabilizing influence in cold disks, where heating is dominated by external irradiation. Rapid radiative cooling reduces the effective buoyancy and allows the VSI to operate. We quantify the cooling timescale $t_c$ needed for efficient VSI growth, through a linear analysis of the VSI with cooling in vertically global, radially local disk models. We find the VSI is most vigorous for rapid cooling with $t_c<Omega_mathrm{K}^{-1}h|q|/(gamma -1)$ in terms of the Keplerian orbital frequency, $Omega_mathrm{K}$; the disks aspect-ratio, $hll1$; the radial power-law temperature gradient, $q$; and the adiabatic index, $gamma$. For longer $t_c$, the VSI is much less effective because growth slows and shifts to smaller length scales, which are more prone to viscous or turbulent decay. We apply our results to PPD models where $t_c$ is determined by the opacity of dust grains. We find that the VSI is most effective at intermediate radii, from $sim5$AU to $sim50$AU with a characteristic growth time of $sim30$ local orbital periods. Growth is suppressed by long cooling times both in the opaque inner disk and the optically thin outer disk. Reducing the dust opacity by a factor of 10 increases cooling times enough to quench the VSI at all disk radii. Thus the formation of solid protoplanets, a sink for dust grains, can impede the VSI.
100 - Min-Kai Lin 2015
We describe a new mechanism that leads to the destabilisation of non-axisymmetric waves in astrophysical discs with an imposed radial temperature gradient. This might apply, for example, to the outer parts of protoplanetary discs. We use linear densi ty wave theory to show that non-axisymmetric perturbations generally do not conserve their angular momentum in the presence of a forced temperature gradient. This implies an exchange of angular momentum between linear perturbations and the background disc. In particular, when the disturbance is a low-frequency trailing wave and the disc temperature decreases outwards, this interaction is unstable and leads to the growth of the wave. We demonstrate this phenomenon through numerical hydrodynamic simulations of locally isothermal discs in 2D using the FARGO code and in 3D with the ZEUS-MP and PLUTO codes. We consider radially structured discs with a self-gravitating region which remains stable in the absence of a temperature gradient. However, when a temperature gradient is imposed we observe exponential growth of a one-armed spiral mode (azimuthal wavenumber $m=1$) with co-rotation radius outside the bulk of the spiral arm, resulting in a nearly-stationary one-armed spiral pattern. The development of this one-armed spiral does not require the movement of the central star, as found in previous studies. Because destabilisation by a forced temperature gradient does not explicitly require disc self-gravity, we suggest this mechanism may also affect low-frequency one-armed oscillations in non-self-gravitating discs.
66 - Shu-Zheng Yang , Kai Lin , Jin Li 2014
Recently the modified Dirac equation with Lorentz invariance violation has been proposed, which would be helpful to resolve some issues in quantum gravity theory and high energy physics. In this paper, the modified Dirac equation has been generalized in curved spacetime, and then fermion tunneling of black strings is researched under this correctional Dirac field theory. We also use semi-classical approximation method to get correctional Hamilton-Jacobi equation, so that the correctional Hawking temperature and correctional black holes entropy are derived.
We study the stability of gaps opened by a giant planet in a self-gravitating protoplanetary disc. We find a linear instability associated with both the self-gravity of the disc and local vortensity maxima which coincide with gap edges. For our model s, these edge modes develop and extend to twice the orbital radius of a Saturn mass planet in discs with disc-to-star mass ratio >0.06, corresponding to a Toomre Q < 1.5 at the outer disc boundary. Unlike the local vortex-forming instabilities associated with gap edges in weakly or non-self-gravitating low viscosity discs, the edge modes are global and exist only in sufficiently massive discs, but for the typical viscosity values adopted for protoplanetary discs. Analytic modelling and linear calculations show edge modes may be interpreted as a localised disturbance associated with a gap edge inducing activity in the extended disc, through the launching of density waves excited at Lindblad resonances. Nonlinear hydrodynamic simulations are performed to investigate the evolution of edge modes in disc-planet systems. The form and growth rates of unstable modes are consistent with linear theory. Their dependence on viscosity and gravitational softening is also explored. We also performed a first study of the effect of edge modes on planetary migration. We found that if edge modes develop, then the average disc-on-planet torque becomes more positive with increasing disc mass. In simulations where the planet was allowed to migrate, although a fast type III migration could be seen that was similar to that seen in non-self-gravitating discs, we found that it was possible for the planet to interact gravitationally with the spiral arms associated with an edge mode and that this could result in the planet being scattered outwards. Thus orbital migration is likely to be complex and non monotonic in massive discs of the type we consider.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا