ﻻ يوجد ملخص باللغة العربية
Recently the modified Dirac equation with Lorentz invariance violation has been proposed, which would be helpful to resolve some issues in quantum gravity theory and high energy physics. In this paper, the modified Dirac equation has been generalized in curved spacetime, and then fermion tunneling of black strings is researched under this correctional Dirac field theory. We also use semi-classical approximation method to get correctional Hamilton-Jacobi equation, so that the correctional Hawking temperature and correctional black holes entropy are derived.
The largest gap in our understanding of nature at the fundamental level is perhaps a unified description of gravity and quantum theory. Although there are currently a variety of theoretical approaches to this question, experimental research in this f
We discuss Hawking radiation from a five-dimensional squashed Kaluza-Klein black hole on the basis of the tunneling mechanism. A simple manner, which was recently suggested by Umetsu, is possible to extend the original derivation by Parikh and Wilcze
Hawkings calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken into account, there is a minimal observable length. In this paper, we investigate fermions tunnelling from the charged
In this work, we compute some phenomenological bounds for the electromagnetic and massive gravitational high-derivative extensions supposing that it is possible to have an astrophysical process that generates simultaneously gravitational and electrom
In the spacetime of non-stationary spherical symmetry Vaidya-Bonner black hole, an accurate modification of Hawking tunneling radiation for fermions with arbitrarily spin is researched. Considering a light dispersion relationship derived from string