ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid quantum systems aim at combining the advantages of different physical systems and to produce novel quantum devices. In particular, the hybrid combination of superconducting circuits and spins in solid-state crystals is a versatile platform to explore many quantum electrodynamics problems. Recently, the remote coupling of nitrogen-vacancy center spins in diamond via a superconducting bus was demonstrated. However, a rigorous experimental test of the quantum nature of this hybrid system and in particular entanglement is still missing. We review the theoretical ideas to generate and detect entanglement, and present our own scheme to achieve this.
Quantum networks are a new paradigm of complex networks, allowing us to harness networked quantum technologies and to develop a quantum internet. But how robust is a quantum network when its links and nodes start failing? We show that quantum network s based on typical noisy quantum-repeater nodes are prone to discontinuous phase transitions with respect to the random loss of operating links and nodes, abruptly compromising the connectivity of the network, and thus significantly limiting the reach of its operation. Furthermore, we determine the critical quantum-repeater efficiency necessary to avoid this catastrophic loss of connectivity as a function of the network topology, the network size, and the distribution of entanglement in the network. In particular, our results indicate that a scale-free topology is a crucial design principle to establish a robust large-scale quantum internet.
Recent advances in quantum engineering have given us the ability to design hybrid systems with novel properties normally not present in the regime they operate in. The coupling of spin ensembles and magnons to microwave resonators has for instance le ad to a much richer understanding of collective effects in these systems and their potential quantum applications. We can also hybridize electron and nuclear spin ensembles together in the solid-state regime to investigate collective effects normally only observed in the atomic, molecular and optical world. Here we explore in the solid state regime the dynamics of a double domain nuclear spin ensemble coupled to the Nambu-Goldstone boson in GaAs semiconductors and show it exhibits both collective and individual relaxation (thermalization) on very different time scales. Further the collective relaxation of the nuclear spin ensemble is what one would expect from superradiant decay. This opens up the possibility for the exploration of novel collective behaviour in solid state systems where the natural energies associated with those spins are much less than the thermal energy.
Quantum networking allows the transmission of information in ways unavailable in the classical world. Single packets of information can now be split and transmitted in a coherent way over different routes. This aggregation allows information to be tr ansmitted in a fault tolerant way between different parts of the quantum network (or the future internet) - even when that is not achievable with a single path approach. It is a quantum phenomenon not available in conventional telecommunication networks either. We show how the multiplexing of independent quantum channels allows a distributed form of quantum error correction to protect the transmission of quantum information between nodes or users of a quantum network. Combined with spatial-temporal single photon multiplexing we observe a significant drop in network resources required to transmit that quantum signal - even when only two channels are involved. This work goes far beyond the concepts of channel capacities and shows how quantum networking may operate in the future. Further it shows that quantum networks are likely to operate differently from their classical counterparts which is an important distinction as we design larger scale ones.
Quantum phases of matter have many relevant applications in quantum computation and quantum information processing. Current experimental feasibilities in diverse platforms allow us to couple two or more subsystems in different phases. In this letter, we investigate the situation where one couples two domains of a periodically-driven spin chain where one of them is ergodic while the other is fully localized. By combining tools of both graph and Floquet theory, we show that the localized domain remains stable for strong disorder, but as this disorder decreases the localized domain becomes ergodic.
In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond (NV-). Each repeater node is built from simple modules comprising an optical cavity containing a single NV-, with one nuclear spin from 15N as quantum memory. The operation in the module only uses deterministic processes and interactions and achieves high fidelity (>99%) operation, and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead to the processes to be probabilistic but heralded. The most resource modest repeater architecture contains at least two modules at each node, and the repeater nodes are than connected by telecom wavelength entangled photon pairs. We discuss the performance of quantum repeaters starting from the minimum-resource strategy with several modules (~10) and then incorporating more resource-intense strategies step by step. Our architecture enables large-scale quantum information networks with existing technology.
In optical interferometry multi-mode entanglement is often assumed to be the driving force behind quantum enhanced measurements. Recent work has shown this assumption to be false: single mode quantum states perform just as well as their multi-mode en tangled counterparts. We go beyond this to show that when photon losses occur - an inevitability in any realistic system - multi-mode entanglement is actually detrimental to obtaining quantum enhanced measurements. We specifically apply this idea to a superposition of coherent states, demonstrating that these states show a robustness to loss that allows them to significantly outperform their competitors in realistic systems. A practically viable measurement scheme is then presented that allows measurements close to the theoretical bound, even with loss. These results promote a new way of approaching optical quantum metrology using single-mode states that we expect to have great implications for the future.
Physics and information are intimately connected, and the ultimate information processing devices will be those that harness the principles of quantum mechanics. Many physical systems have been identified as candidates for quantum information process ing, but none of them are immune from errors. The challenge remains to find a path from the experiments of today to a reliable and scalable quantum computer. Here, we develop an architecture based on a simple module comprising an optical cavity containing a single negatively-charged nitrogen vacancy centre in diamond. Modules are connected by photons propagating in a fiber-optical network and collectively used to generate a topological cluster state, a robust substrate for quantum information processing. In principle, all processes in the architecture can be deterministic, but current limitations lead to processes that are probabilistic but heralded. We find that the architecture enables large-scale quantum information processing with existing technology.
Quantum information can be protected from decoherence and other errors, but only if these errors are sufficiently rare. For quantum computation to become a scalable technology, practical schemes for quantum error correction that can tolerate realisti cally high error rates will be necessary. In some physical systems, errors may exhibit a characteristic structure that can be carefully exploited to improve the efficacy of error correction. Here, we describe a scheme for topological quantum error correction to protect quantum information from a dephasing-biased error model, where we combine a repetition code with a topological cluster state. We find that the scheme tolerates error rates of up to 1.37%-1.83% per gate, requiring only short-range interactions in a two-dimensional array.
We present a new quasi-probability distribution function for ensembles of spin-half particles or qubits that has many properties in common with Wigners original function for systems of continuous variables. We show that this function provides clear a nd intuitive graphical representation of a wide variety of states, including Fock states, spin-coherent states, squeezed states, superpositions and statistical mixtures. Unlike previous attempts to represent ensembles of spins/qubits, this distribution is capable of simultaneously representing several angular momentum shells.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا