ترغب بنشر مسار تعليمي؟ اضغط هنا

333 - Guenther , E.W. , Kabath 2021
Observations in the UV-regime are very important for exoplanet research, because many diagnostically important lines for studying stellar activity are in this regime. Studying stellar activity is not only important because of its negative effects on the determination planetary parameters, but also because the XUV-radiation from the host stars affects the photochemistry and the erosion of planetary atmospheres . Unfortunately, the XUV-region is only accessible from space. However, since the XUV-radiation is correlated with the CaII,HK-lines, we can use these lines to study the XUV radiation indirectly. The CaIIHK lines for relatively bright stars can be observed with PLATOspec, a new high-resolution echelle spectrograph in development for the ESO 1.5m telescope at La Silla. One advantage compared to instruments on larger telescopes will be that large programs can be carried out. There will be two modes for obtaining precise RV-measurements. In the future, the CUBES instrument on the VLT will be able to study the same lines to probe the XUV-radiation in much fainter targets.
86 - Jan Budaj , Petr Kabath , 2020
Thousands of transiting exoplanets have been discovered to date, thanks in great part to the {em Kepler} space mission. As in all populations, and certainly in the case of exoplanets, one finds unique objects with distinct characteristics. Here we wi ll describe the properties and behaviour of a small group of `disintegrating exoplanets discovered over the last few years (KIC 12557548b, K2-22b, and others). They evaporate, lose mass unraveling their naked cores, produce spectacular dusty comet-like tails, and feature highly variable asymmetric transits. Apart from these exoplanets, there is observational evidence for even smaller `exo-objects orbiting other stars: exoasteroids and exocomets. Most probably, such objects are also behind the mystery of Boyajians star. Ongoing and upcoming space missions such as {em TESS} and PLATO will hopefully discover more objects of this kind, and a new era of the exploration of small extrasolar systems bodies will be upon us.
Fulfilling the goals of space-based exoplanetary transit surveys, like Kepler and TESS, is impossible without ground-based spectroscopic follow-up. In particular, the first-step vetting of candidates could easily necessitate several hundreds of hours of telescope time -- an area where 2-m class telescopes can play a crucial role. Here, we describe the results from the science verification of the Ondv{r}ejov Echelle Spectrograph (OES) installed on the 2-m Perek telescope. We discuss the performance of the instrument as well as its suitability for the study of exoplanetary candidates from space-based transit surveys. In spite of being located at an average European observing site, and originally being conceived for the study of variable stars, OES can prove to be an important instrument for the exoplanetary community in the TESS and PLATO era -- reaching accuracies of a few tens of m/s with reasonable sampling and signal-to-noise for sources down to V$sim$13. The stability of OES is demonstrated via long-term monitoring of the standard star HD~109358, while its validity for exoplanetary candidate verification is shown using three K2 candidates EPIC~210925707, EPIC~206135267 and EPIC~211993818, to reveal that they are false positive detections.
Some theories of planet formation and evolution predict that intermediate-mass stars host more hot Jupiters than Sun-like stars, others reach the conclusion that such objects are very rare. By determining the frequencies of those planets we can test those theories. Based on the analysis of Kepler light curves it has been suggested that about 8 per cent of the intermediate-mass stars could have a close-in substellar companion. This would indicate a very high frequency of such objects. Up to now, there was no satisfactory proof or test of this hypothesis. We studied a previously reported sample of 166 planet candidates around main-sequence A-type stars in the Kepler field. We selected six of them for which we obtained extensive long-term radial velocity measurements with the Alfred-Jensch 2-m telescope in Tautenburg and the Perek 2-m telescope in Ondv{r}ejov. We derive upper limits of the masses of the planet candidates. We show that we are able to detect this kind of planet with our telescopes and their instrumentation using the example of MASCARA-1 b. With the transit finding pipeline EXOTRANS we confirm that there is no single transit event from a Jupiter-like planet in the light curves of those 166 stars. We furthermore determine that the upper limit for the occurrence rate of close-in, massive planets for A-type stars in the Kepler sample is around 0.75 per cent. We argue that there is currently little evidence for a very high frequency of close-in, massive planets of intermediate-mass stars.
The technique of transmission spectroscopy allows us to constrain the chemical composition of the atmospheres of transiting exoplanets. It relies on very high signal-to-noise spectroscopic (or spectrophotometric) observations and is thus most suited for bright exoplanet host stars. In the era of TESS, NGST and PLATO, more and more suitable targets, even for mid-sized telescopes, are discovered. Furthermore, a wealth of archival data is available that could become a basis for long-term monitoring of exo-atmospheres. We analyzed archival HARPS spectroscopic time series of four host stars to transiting bloated gas exoplanets, namely WASP-76b, WASP-127b, WASP-166b and KELT-11b, searching for traces of sodium (sodium doublet), hydrogen (H$alpha$, H$beta$), and lithium (670.8 nm). The archival data sets include spectroscopic time series taken during transits. Comparing in- and out-of-transit spectra we can filter out the stellar lines and investigate the absorption from the planet. Simultaneously, the stellar activity is monitored using the Mg I and Ca I lines. We independently detect sodium in the atmosphere of WASP-76b at a 7-9 $sigma$ level. Furthermore, we report also at 4-8 $sigma$ level of significance the detection of sodium in the atmosphere of WASP-127b, confirming earlier result based on low-resolution spectroscopy. The data show no sodium nor any other atom at high confidence levels for WASP-166b nor KELT-11b, hinting at the presence of thick high clouds.
70 - M. Skarka , P. Kabath 2019
Since the CCD technique became financially reachable for amateur astronomers, they can cover topics of professional science. Mainly in the time-domain astronomy, such as variable star research, their help is invaluable. We focus on cooperation betwee n amateur and professional astronomers in the Czech Republic, give some examples of successful projects and propose new programs that can benefit from such cooperation and bring high-quality results.
We present the discovery of a unique object, a chemically peculiar Ap-type star showing $delta$ Scuti pulsations which is bound in an eclipsing binary system with an orbital period shorter than 3 days. HD 99458 is, therefore, a complex astrophysical laboratory opening doors for studying various, often contradictory, physical phenomena at the same time. It is the first Ap star ever discovered in an eclipsing binary. The orbital period of 2.722 days is the second shortest among all known chemically peculiar (CP2) binary stars. Pulsations of $delta$ Scuti type are also extremely rare among CP2 stars and no unambiguously proven candidate has been reported. HD 99458 was formerly thought to be a star hosting an exoplanet, but we definitely reject this hypothesis by using photometric observations from the K2 mission and new radial velocity measurements. The companion is a low-mass red dwarf star ($M_{2}=0.45(2)$ M$_{odot}$) on an inclined orbit ($i=73.2(6)$ degrees) that shows only grazing eclipses. The rotation and orbital periods are synchronized, while the rotation and orbital axes are misaligned. HD 99458 is an interesting system deserving of more intense investigations.
Transmission spectroscopy is an important technique to probe the atmospheres of exoplanets. With the advent of TESS and, in the future, of PLATO, more and more transiting planets around bright stars will be found and the observing time at large teles copes currently used to apply these techniques will not suffice. We demonstrate here that 2-m class telescopes equipped with spectrographs with high resolving power may be used for a certain number of potential targets. We obtained a time series of high-resolution FEROS spectra at the 2.2-m telescope at La Silla of the very hot Jupiter hosting planet WASP-18b and show that our upper limit is consistent with the expectations. This is the first analysis of its kind using 2-m class telescopes, and serves to highlight their potential. In this context, we then proceed to discuss the suitability of this class of telescopes for the upcoming flood of scientifically interesting targets from TESS space mission, and propose a methodology to select the most promising targets. This is of particular significance given that observing time on 2-m class telescopes is more readily available than on large 8-m class facilities.
GJ 1214b is one of the few known transiting super-Earth-sized exoplanets with a measured mass and radius. It orbits an M-dwarf, only 14.55 pc away, making it a favorable candidate for follow-up studies. However, the composition of GJ 1214bs mysteriou s atmosphere has yet to be fully unveiled. Our goal is to distinguish between the various proposed atmospheric models to explain the properties of GJ 1214b: hydrogen-rich or hydrogen-He mix, or a heavy molecular weight atmosphere with reflecting high clouds, as latest studies have suggested. Wavelength-dependent planetary radii measurements from the transit depths in the optical/NIR are the best tool to investigate the atmosphere of GJ 1214b. We present here (i) photometric transit observations with a narrow-band filter centered on 2.14 microns and a broad-band I-Bessel filter centered on 0.8665 microns, and (ii) transmission spectroscopy in the H and K atmospheric windows that cover three transits. The obtained photometric and spectrophotometric time series were analyzed with MCMC simulations to measure the planetary radii as a function of wavelength. We determined radii ratios of 0.1173 for I-Bessel and 0.11735 at 2.14 microns. Our measurements indicate a flat transmission spectrum, in agreement with last atmospheric models that favor featureless spectra with clouds and high molecular weight compositions.
77 - T. Fruth , P. Kabath , J. Cabrera 2012
The CoRoT field LRa02 has been observed with the Berlin Exoplanet Search Telescope II (BEST II) during the southern summer 2007/2008. A first analysis of stellar variability led to the publication of 345 newly discovered variable stars. Now, a deeper analysis of this data set was used to optimize the variability search procedure. Several methods and parameters have been tested in order to improve the selection process compared to the widely used J index for variability ranking. This paper describes an empirical approach to treat systematic trends in photometric data based upon the analysis of variance statistics that can significantly decrease the rate of false detections. Finally, the process of reanalysis and method improvement has virtually doubled the number of variable stars compared to the first analysis by Kabath et al. A supplementary catalog of 272 previously unknown periodic variables plus 52 stars with suspected variability is presented. Improved ephemerides are given for 19 known variables in the field. In addition, the BEST II results are compared with CoRoT data and its automatic variability classification.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا