ﻻ يوجد ملخص باللغة العربية
Some theories of planet formation and evolution predict that intermediate-mass stars host more hot Jupiters than Sun-like stars, others reach the conclusion that such objects are very rare. By determining the frequencies of those planets we can test those theories. Based on the analysis of Kepler light curves it has been suggested that about 8 per cent of the intermediate-mass stars could have a close-in substellar companion. This would indicate a very high frequency of such objects. Up to now, there was no satisfactory proof or test of this hypothesis. We studied a previously reported sample of 166 planet candidates around main-sequence A-type stars in the Kepler field. We selected six of them for which we obtained extensive long-term radial velocity measurements with the Alfred-Jensch 2-m telescope in Tautenburg and the Perek 2-m telescope in Ondv{r}ejov. We derive upper limits of the masses of the planet candidates. We show that we are able to detect this kind of planet with our telescopes and their instrumentation using the example of MASCARA-1 b. With the transit finding pipeline EXOTRANS we confirm that there is no single transit event from a Jupiter-like planet in the light curves of those 166 stars. We furthermore determine that the upper limit for the occurrence rate of close-in, massive planets for A-type stars in the Kepler sample is around 0.75 per cent. We argue that there is currently little evidence for a very high frequency of close-in, massive planets of intermediate-mass stars.
We report on the status of our spectropolarimetric observations of massive stars. During the last years, we have discovered magnetic fields in many objects of the upper main sequence, including Be stars, beta Cephei and Slowly Pulsating B stars, and
We report the results of a direct imaging survey of A- and F-type main sequence stars searching for giant planets. A/F stars are often the targets of surveys, as they are thought to have more massive giant planets relative to solar-type stars. Howeve
Opacity enhancements for stellar interior conditions have been explored to explain observed pulsation frequencies and to extend the pulsation instability region for B-type main-sequence variable stars. For these stars, the pulsations are driven in th
A significant fraction of massive main-sequence stars show strong, large-scale magnetic fields. The origin of these fields, their lifetimes, and their role in shaping the characteristics and evolution of massive stars are currently not well understoo
We provide an observational view of evolutionary models in the Hertzsprung--Russell diagram, on the main sequence. For that we computed evolutionary models with the code STAREVOL for 15 < M/Msun < 100. We subsequently calculated atmosphere models at