ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that a unified framework based on an $SU(2)_H$ horizontal symmetry which generates a naturally large neutrino transition magnetic moment and explains the XENON1T electron recoil excess also predicts a positive shift in the muon anomalous magn etic moment. This shift is of the right magnitude to be consistent with the Brookhaven measurement as well as the recent Fermilab measurement of the muon $g-2$. A relatively light neutral scalar from a Higgs doublet with mass near 100 GeV contributes to muon $g-2$, while its charged partner induces the neutrino magnetic moment. We analyze the collider tests of this framework and find that the HL-LHC can probe the entire parameter space of these models.
75 - K.S. Babu , Anil Thapa 2020
We develop a minimal left-right symmetric model based on the gauge group $SU(3)_C otimes SU(2)_L otimes SU(2)_R otimes U(1)_{B-L}$ wherein the Higgs triplets conventionally employed for symmetry breaking are replaced by Higgs doublets. Majorana masse s for the right-handed neutrinos $( u_R$) are induced via two-loop diagrams involving a charged scalar field $eta^+$. This setup is shown to provide excellent fits to neutrino oscillation data via the seesaw mechanism for the entire range of the $W_R^pm$ mass, from TeV to the GUT scale. When the $W_R^pm$ mass is at the TeV scale, the $ u_R$ masses turn out to be in the MeV range. We analyze constraints from low energy experiments, early universe cosmology and from supernova 1987a on such a scenario and show its consistency. We also study collider implications of a relatively light $eta^+$ scalar through its decay into multi-lepton final states and derive a lower limit of 390 GeV on its mass from the LHC, which can be improved to 555 GeV in its high luminosity run.
We present a model of radiative neutrino masses which also resolves anomalies reported in $B$-meson decays, $R_{D^{(star)}}$ and $R_{K^{(star)}}$, as well as in muon $g-2$ measurement, $Delta a_mu$. Neutrino masses arise in the model through loop dia grams involving TeV-scale leptoquark (LQ) scalars $R_2$ and $S_3$. Fits to neutrino oscillation parameters are obtained satisfying all flavor constraints which also explain the anomalies in $R_{D^{(star)}}$, $R_{K^{(star)}}$ and $Delta a_mu$ within $1, sigma$. An isospin-3/2 Higgs quadruplet plays a crucial role in generating neutrino masses; we point out that the doubly-charged scalar contained therein can be produced in the decays of the $S_3$ LQ, which enhances its reach to 1.1 (6.2) TeV at $sqrt s=14$ TeV high-luminosity LHC ($sqrt s=100$ TeV FCC-hh). We also present flavor-dependent upper limits on the Yukawa couplings of the LQs to the first two family fermions, arising from non-resonant dilepton ($pp rightarrow ell^+ ell^-$) processes mediated by $t$-channel LQ exchange, which for 1 TeV LQ mass, are found to be in the range $(0.15 - 0.36)$. These limits preclude any explanation of $R_{D^{(star)}}$ through LQ-mediated $B$-meson decays involving $ u_e$ or $ u_mu$ in the final state. We also find that the same Yukawa couplings responsible for the chirally-enhanced contribution to $Delta a_mu$ give rise to new contributions to the SM Higgs decays to muon and tau pairs, with the modifications to the corresponding branching ratios being at (2-6)% level, which could be tested at future hadron colliders, such as HL-LHC and FCC-hh.
194 - K.S. Babu , Shaikh Saad 2020
The clockwork mechanism, which can naturally explain the origin of small numbers, is implemented in $SO(10)$ grand unified theories to address the origin of hierarchies in fermion masses and mixings. We show that a minimal Yukawa sector involving a $ 10_H$ and $overline{126}_H$ of Higgs bosons, extended with two clockwork chains consisting of $16+overline{16}$ vector-like fermions, can explain the hierarchical patterns with all the Yukawa couplings being of order one. Emergence of a realistic mass spectrum does not require any symmetry that distinguishes the three generations. We develop clockwork-extended $SO(10)$ GUTs both in the context of SUSY and non-SUSY frameworks. Implementation of the mechanism in non-SUSY scenario assumes a Peccei-Quinn symmetry realized at an intermediate scale, with the clockwork sector carrying non-trivial charges, which solves the strong CP problem and provides axion as a dark matter candidate.
The excess in electron recoil events reported recently by the XENON1T experiment may be interpreted as evidence for a sizable transition magnetic moment $mu_{ u_e u_mu}$ of Majorana neutrinos. We show the consistency of this scenario when a single co mponent transition magnetic moment takes values $mu_{ u_e u_mu} in(1.65 - 3.42) times 10^{-11} mu_B$. Such a large value typically leads to unacceptably large neutrino masses. In this paper we show that new leptonic symmetries can solve this problem and demonstrate this with several examples. We first revive and then propose a simplified model based on $SU(2)_H$ horizontal symmetry. Owing to the difference in their Lorentz structures, in the $SU(2)_H$ symmetric limit, $m_ u$ vanishes while $mu_{ u_e u_mu}$ is nonzero. Our simplified model is based on an approximate $SU(2)_H$, which we also generalize to a three family $SU(3)_H$-symmetry. Collider and low energy tests of these models are analyzed. We have also analyzed implications of the XENON1T data for the Zee model and its extensions which naturally generate a large $mu_{ u_e u_mu}$ with suppressed $m_ u$ via a spin symmetry mechanism, but found that the induced $mu_{ u_e u_mu}$ is not large enough to explain recent data. Finally, we suggest a mechanism to evade stringent astrophysical limits on neutrino magnetic moments arising from stellar evolution by inducing a medium-dependent mass for the neutrino.
We explore the complementarity between LHC searches and neutrino experiments in probing neutrino non-standard interactions. Our study spans the theoretical frameworks of effective field theory, simplified model and an illustrative UV completion, high lighting the synergies and distinctive features in all cases. We show that besides constraining the allowed NSI parameter space, the LHC data can break important degeneracies present in oscillation experiments such as DUNE, while the latter play an important role in probing light and weakly coupled physics undetectable at the LHC.
We point out that if neutron--antineutron oscillation is observed in a free neutron oscillation experiment, it will put an upper limit on the strengths of Lorentz invariance violating (LIV) mass operators for neutrons at the level of $10^{-23}$ GeV o r so, which would be the most stringent LIV limit for neutrons. We also study constraints on $Delta B=2$ LIV operators and find that for one particular operator degaussing is not necessary to obtain a visible signal. We also note that observation of $n-bar{n}$ oscillation signal in the nucleon decay search experiment involving nuclei does not lead to any limit on LIV operators since the nuclear potential difference between neutron and antineutrons will mask any Lorentz violating effect.
We show that discovery of baryon number violation in two processes with at least one obeying the selection rule Delta (B-L) = pm 2 can determine the Majorana character of neutrinos. Thus observing p to e^+ pi^0 and n to e^- pi^0 decays, or p to e^+ p i^0 and n-nbar oscillations, or n to e^- pi^+ and n-nbar oscillations would establish that neutrinos are Majorana particles. We discuss this in a model-independent effective operator approach.
This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Prese nt and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.
A recently proposed scenario for baryogenesis, called post--sphaleron baryogenesis (PSB) is discussed within a class of quark--lepton unified framework based on the gauge symmetry SU(2)_L x SU(2)_R x SU(4)_c realized in the multi--TeV scale. The bary on asymmetry of the universe in this model is produced below the electroweak phase transition temperature after the sphalerons have decoupled from the Hubble expansion. These models embed naturally the seesaw mechanism for neutrino masses, and predict color-sextet scalar particles in the TeV range which may be accessible to the LHC experiments. A necessary consequence of this scenario is the baryon number violating Delta B=2 process of neutron--antineutron (n-bar{n}) oscillations. In this paper we show that the constraints of PSB, when combined with the neutrino oscillation data and restrictions from flavor changing neutral currents mediated by the colored scalars imply an upper limit on the n-bar{n} oscillation time of 5 x 10^{10} sec. regardless of the quark--lepton unification scale. If this scale is relatively low, in the (200-250) TeV range, tau_{n-bar{n}} is predicted to be less than 10^{10} sec., which is accessible to the next generation of proposed experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا