ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the critical breakdown of two-dimensional quantum magnets in the presence of algebraically decaying long-range interactions by investigating the transverse-field Ising model on the square and triangular lattice. This is achieved technically by combining perturbative continuous unitary transformations with classical Monte Carlo simulations to extract high-order series for the one-particle excitations in the high-field quantum paramagnet. We find that the unfrustrated systems change from mean-field to nearest-neighbor universality with continuously varying critical exponents, while the system remains in the universality class of the nearest-neighbor model in the frustrated cases independent of the long-range nature of the interaction.
The Heisenberg model for S=1/2 describes the interacting spins of electrons localized on lattice sites due to strong repulsion. It is the simplest strong-coupling model in condensed matter physics with wide-spread applications. Its relevance has been boosted further by the discovery of curate high-temperature superconductors. In leading order, their undoped parent compounds realize the Heisenberg model on square-lattices. Much is known about the model, but mostly at small wave vectors, i.e., for long-range processes, where the physics is governed by spin waves (magnons), the Goldstone bosons of the long-range ordered antiferromagnetic phase. Much less, however, is known for short-range processes, i.e., at large wave vectors. Yet these processes are decisive for understanding high-temperature superconductivity. Recent reports suggest that one has to resort to qualitatively different fractional excitations, spinons. By contrast, we present a comprehensive picture in terms of dressed magnons with strong mutual attraction on short length scales. The resulting spectral signatures agree strikingly with experimental data
43 - K. Coester , K.P. Schmidt 2016
We describe a generic scheme to extract critical exponents of quantum lattice models from sequences of numerical data which is for example relevant for non-perturbative linked-cluster expansions (NLCEs) or non-pertubative variants of continuous unita ry transformations (CUTs). The fundamental idea behind our approach is a reformulation of the numerical data sequences as a series expansion in a pseudo parameter. This allows to utilize standard series expansion extrapolation techniques to extract critical properties like critical points and critical exponents. The approach is illustrated for the deconfinement transition of the antiferromagmetic spin 1/2 Heisenberg chain.
78 - H-Y.Yang , K.P. Schmidt 2010
We present a robust scheme to derive effective models non-perturbatively for quantum lattice models when at least one degree of freedom is gapped. A combination of graph theory and the method of continuous unitary transformations (gCUTs) is shown to efficiently capture all zero-temperature fluctuations in a controlled spatial range. The gCUT can be used either for effective quasi-particle descriptions or for effective low-energy descriptions in case of infinitely degenerate subspaces. We illustrate the method for 1d and 2d lattice models yielding convincing results in the thermodynamic limit. We find that the recently discovered spin liquid in the Hubbard model on the honeycomb lattice lies outside the perturbative strong-coupling regime. Various extensions and perspectives of the gCUT are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا