ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyse the model of stochastic re-acceleration of electrons, which are emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then into the Galactic halo, in order to explain the origin on nonthermal (radio and gamma-ray) emissio n from the Fermi Bubbles (FB). We assume that the energy for re-acceleration in the halo is supplied by shocks generated by processes of star accretion onto the central black hole. Numerical simulations show that regions with strong turbulence (places for electron re-acceleration) are located high up in the Galactic Halo about several kpc above the disk. The energy of SNR electrons that reach these regions does not exceed several GeV because of synchrotron and inverse Compton energy losses. At appropriate parameters of re-acceleration these electrons can be re-accelerated up to the energy 10E12 eV which explains in this model the origin of the observed radio and gamma-ray emission from the FB. However although the model gamma-ray spectrum is consistent with the Fermi results, the model radio spectrum is steeper than the observed by WMAP and Planck. If adiabatic losses due to plasma outflow from the Galactic central regions are taken into account, then the re-acceleration model nicely reproduces the Planck datapoints.
We analyse the origin of the gamma-ray flux from the Fermi Bubbles (FBs) in the framework of the hadronic model in which gamma-rays are produced by collisions of relativistic protons with the protons of background plasma in the Galactic halo. It is a ssumed in this model that the observed radio emission from the FBs is due to synchrotron radiation of secondary electrons produced by $pp$ collisions. However, if these electrons loose their energy by the synchrotron and inverse-Compton, the spectrum of secondary electrons is too soft, and an additional arbitrary component of primary electrons is necessary in order to reproduce the radio data. Thus, a mixture of the hadronic and leptonic models is required for the observed radio flux. It was shown that if the spectrum of primary electrons is $propto E_e^{-2}$, the permitted range of the magnetic field strength is within 2 - 7 $mu$G region. The fraction of gamma-rays produced by $pp$ collisions can reach about 80% of the total gamma-ray flux from the FBs. If magnetic field is <2 $mu$G or >7 $mu$G the model is unable to reproduce the data. Alternatively, the electrons in the FBs may lose their energy by adiabatic energy losses if there is a strong plasma outflow in the GC. Then, the pure hadronic model is able to reproduce characteristics of the radio and gamma-ray flux from the FBs. However, in this case the required magnetic field strength in the FBs and the power of CR sources are much higher than those followed from observations.
We analyse processes of electron acceleration in the Fermi Bubbles in order to define parameters and restrictions of the models, which are suggested for the origin of these giant radio and gamma-ray structures. In the case of leptonic origin of the n onthermal radiation from the Bubbles, these electrons should be produced somehow in-situ because of relatively short lifetime of high energy electrons, which lose their energy by synchrotron and inverse Compton processes. It has been suggested that electrons in Bubbles may be accelerated by shocks produced by tidal disruption of star accreting onto the central black hole or a process of re-acceleration of electrons ejected by supernova remnants. These processes will be investigated in subsequent papers. In this paper we focus to study in-situ stochastic (Fermi) acceleration by a hydromagnetic/supersonic turbulence, in which electrons can be directly accelerated from the background plasma. We showed that the acceleration from the background plasma is able to explain the observed fluxes of radio and gamma-ray emission from the Bubbles but the range of permitted parameters of the model is strongly restricted.
We analyse processes of particle acceleration in the Fermi Bubbles. The goal of our investigations is to obtain restrictions for acceleration mechanisms. Our analysis of the three processes: acceleration from background plasma, re-acceleration of rel ativistic electrons emitted by supernova remnants, and acceleration by shocks generated by processes of star tidal disruption in the Galactic Center, showed that the model of multi-shock acceleration does not have serious objections at present and therefore seems us more attractive than others.
125 - Y. C. Zou 2013
The X-ray emission from Swift J1644+57 is not steadily decreasing instead it shows multiple pulses with declining amplitudes. We model the pulses as reverse shocks from collisions between the late ejected shells and the externally shocked material, w hich is decelerated while sweeping the ambient medium. The peak of each pulse is taken as the maximum emission of each reverse shock. With a proper set of parameters, the envelope of peaks in the light curve as well as the spectrum can be modelled nicely.
210 - E. M. H. Wu 2012
We report on evidence for orbital phase-dependence of the gamma-ray emission from PSR B1957+20 black widow system by using the data of the Fermi Large Area Telescope. We divide an orbital cycle into two regions: a region containing the inferior conju nction, and the other region containing rest of the orbital cycle. We show that the observed spectra for the different orbital regions are fitted by different functional forms. The spectrum of the orbital region containing inferior conjunction can be described by a power-law with an exponential cutoff (PLE) model, which gives the best-fit model for the orbital phase that does not contain the inferior conjunction, plus an extra component above ~2.7 GeV. The emission above 3 GeV in this region is detected with a ~7-sigma confidence level. The gamma-ray data above ~2.7 GeV are observed to be modulated at the orbital period at the ~2.3-sigma level. We anticipate that the PLE component dominating below ~2.7 GeV originates from the pulsar magnetosphere. We also show that the inverse-Compton scattering of the thermal radiation of the companion star off a cold ultra-relativistic pulsar wind can explain the extra component above ~2.7 GeV. The black widow pulsar PSR B1957+20 may be the member of a new class of object, in the sense that the system is showing gamma-ray emission with both magnetospheric and pulsar wind origins.
The higher dimensional Weyl curvature induces on the brane a new source of gravity. This Weyl fluid of geometrical origin (reducing in the spherically symmetric, static configuration to a dark radiation and dark pressure) modifies space-time geometry around galaxies and has been shown to explain the flatness of galactic rotation curves. Independent observations for discerning between the Weyl fluid and other dark matter models are necessary. Gravitational lensing could provide such a test. Therefore we study null geodesics and weak gravitational lensing in the dark radiation dominated region of galaxies in a class of spherically symmetric brane-world metrics. We find that the lensing profile in the brane-world scenario is distinguishable from dark matter lensing, despite both the brane-world scenario and dark matter models fitting the rotation curve data. In particular, in the asymptotic regions light deflection is 18% enhanced as compared to dark matter halo predictions. For a linear equation of state of the Weyl fluid we further find a critical radius, below which brane-world effects reduce, while above it they amplify light deflection. This is in contrast to any dark matter model, the addition of which always increases the deflection angle.
The {it Fermi} Large Area Telescope has recently discovered two giant gamma-ray bubbles which extend north and south of the Galactic center with diameters and heights of the order of $Hsim 10$ kpc. We suggest that the periodic star capture processes by the Galactic supermassive black hole Sgr A$^*$, with a capture rate of $tau_{rm cap}^{-1}sim 3times 10^{-5}$ yr$^{-1}$ and an energy release of $Wsim 3times 10^{52}$ erg per capture, can result in hot plasma injecting into the Galactic halo at a wind velocity of $usim 10^8$ cm s$^{-1}$. The periodic injection of hot plasma can produce a series of shocks. Energetic protons in the bubble are re-accelerated when they interact with these shocks. We show that for energy larger than $E> 10^{15}$ eV, the acceleration process can be better described by the stochastic second-order Fermi acceleration. We propose that hadronic cosmic rays (CRs) within the ``knee of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Re-acceleration of these particles in the Fermi Bubble produces CRs beyond the knee. With a mean CR diffusion coefficient in this energy range in the bubble $D_Bsim 3times 10^{30}$ cm$^2$ s$^{-1}$, we can reproduce the spectral index of the spectrum beyond the knee and within. The conversion efficiency from shock energy of the bubble into CR energy is about 10%. This model provides a natural explanation of the observed CR flux, spectral indices, and matching of spectra at the knee.
Fermi has discovered two giant gamma-ray-emitting bubbles that extend nearly 10 kpc in diameter. We propose that periodic star capture processes by the galactic supermassive black hole, Sgr A*, with a capture rate $<10^{-5}$ yr$^{-1}$ and energy rele ase $sim 10^{52}$ erg per one capture can produce shocks in the halo, which accelerate electrons to the energy ~ 1 TeV. These electrons generate radio emission via synchrotron radiation, and gamma-rays via inverse Compton scattering with the relic and the galactic soft photons. Estimates of the diffusion coefficient from the observed gamma-ray flux explains consistently the necessary maximum energy of electrons and sharp edges of the bubble.
Fermi LAT has discovered two extended gamma-ray bubbles above and below the galactic plane. We propose that their origin is due to the energy release in the Galactic center (GC) as a result of quasi-periodic star accretion onto the central black hole . Shocks generated by these processes propagate into the Galactic halo and accelerate particles there. We show that electrons accelerated up to ~10 TeV may be responsible for the observed gamma-ray emission of the bubbles as a result of inverse Compton (IC) scattering on the relic photons. We also suggest that the Bubble could generate the flux of CR protons at energies > 10^15 eV because the shocks in the Bubble have much larger length scales and longer lifetimes in comparison with those in SNRs. This may explain the the CR spectrum above the knee.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا