ترغب بنشر مسار تعليمي؟ اضغط هنا

67 - T. Huckle , K. Waldherr , 2013
We focus on symmetries related to matrices and vectors appearing in the simulation of quantum many-body systems. Spin Hamiltonians have special matrix-symmetry properties such as persymmetry. Furthermore, the systems may exhibit physical symmetries t ranslating into symmetry properties of the eigenvectors of interest. Both types of symmetry can be exploited in sparse representation formats such as Matrix Product States (MPS) for the desired eigenvectors. This paper summarizes symmetries of Hamiltonians for typical physical systems such as the Ising model and lists resulting properties of the related eigenvectors. Based on an overview of Matrix Product States (Tensor Trains or Tensor Chains) and their canonical normal forms we show how symmetry properties of the vector translate into relations between the MPS matrices and, in turn, which symmetry properties result from relations within the MPS matrices. In this context we analyze different kinds of symmetries and derive appropriate normal forms for MPS representing these symmetries. Exploiting such symmetries by using these normal forms will lead to a reduction in the number of degrees of freedom in the MPS matrices. This paper provides a uniform platform for both well-known and new results which are presented from the (multi-)linear algebra point of view.
137 - T. Huckle , K. Waldherr , 2012
The computation of the ground state (i.e. the eigenvector related to the smallest eigenvalue) is an important task in the simulation of quantum many-body systems. As the dimension of the underlying vector space grows exponentially in the number of pa rticles, one has to consider appropriate subsets promising both convenient approximation properties and efficient computations. The variational ansatz for this numerical approach leads to the minimization of the Rayleigh quotient. The Alternating Least Squares technique is then applied to break down the eigenvector computation to problems of appropriate size, which can be solved by classical methods. Efficient computations require fast computation of the matrix-vector product and of the inner product of two decomposed vectors. To this end, both appropriate representations of vectors and efficient contraction schemes are needed. Here approaches from many-body quantum physics for one-dimensional and two-dimensional systems (Matrix Product States and Projected Entangled Pair States) are treated mathematically in terms of tensors. We give the definition of these concepts, bring some results concerning uniqueness and numerical stability and show how computations can be executed efficiently within these concepts. Based on this overview we present some modifications and generalizations of these concepts and show that they still allow efficient computations such as applicable contraction schemes. In this context we consider the minimization of the Rayleigh quotient in terms of the {sc parafac} (CP) formalism, where we also allow different tensor partitions. This approach makes use of efficient contraction schemes for the calculation of inner products in a way that can easily be extended to the mps format but also to higher dimensional problems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا