ترغب بنشر مسار تعليمي؟ اضغط هنا

176 - F. Wang , K. Shepperd , J. Hicks 2011
In this work we use LEEM, XPEEM and XPS to study how the excess Si at the graphene-vacuum interface reorders itself at high temperatures. We show that silicon deposited at room temperature onto multilayer graphene films grown on the SiC(000[`1]) rapi dly diffuses to the graphene-SiC interface when heated to temperatures above 1020. In a sequence of depositions, we have been able to intercalate ~ 6 ML of Si into the graphene-SiC interface.
Graphene stacked in a Bernal configuration (60 degrees relative rotations between sheets) differs electronically from isolated graphene due to the broken symmetry introduced by interlayer bonds forming between only one of the two graphene unit cell a toms. A variety of experiments have shown that non-Bernal rotations restore this broken symmetry; consequently, these stacking varieties have been the subject of intensive theoretical interest. Most theories predict substantial changes in the band structure ranging from the development of a Van Hove singularity and an angle dependent electron localization that causes the Fermi velocity to go to zero as the relative rotation angle between sheets goes to zero. In this work we show by direct measurement that non-Bernal rotations preserve the graphene symmetry with only a small perturbation due to weak effective interlayer coupling. We detect neither a Van Hove singularity nor any significant change in the Fermi velocity. These results suggest significant problems in our current theoretical understanding of the origins of the band structure of this material.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا