ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry breaking in commensurate graphene rotational stacking; a comparison of theory and experiment

387   0   0.0 ( 0 )
 نشر من قبل Edward Conrad
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene stacked in a Bernal configuration (60 degrees relative rotations between sheets) differs electronically from isolated graphene due to the broken symmetry introduced by interlayer bonds forming between only one of the two graphene unit cell atoms. A variety of experiments have shown that non-Bernal rotations restore this broken symmetry; consequently, these stacking varieties have been the subject of intensive theoretical interest. Most theories predict substantial changes in the band structure ranging from the development of a Van Hove singularity and an angle dependent electron localization that causes the Fermi velocity to go to zero as the relative rotation angle between sheets goes to zero. In this work we show by direct measurement that non-Bernal rotations preserve the graphene symmetry with only a small perturbation due to weak effective interlayer coupling. We detect neither a Van Hove singularity nor any significant change in the Fermi velocity. These results suggest significant problems in our current theoretical understanding of the origins of the band structure of this material.



قيم البحث

اقرأ أيضاً

100 - Chao Lei , Lukas Linhart , Wei Qin 2020
We construct a continuum model of twisted trilayer graphene using {it ab initio} density-functional-theory calculations, and apply it to address twisted trilayer electronic structure. Our model accounts for moire variation in site energies, hopping b etween outside layers and within layers. We focus on the role of a mirror symmetry present in ABA graphene trilayers with a middle layer twist. The mirror symmetry is lost intentionally when a displacement field is applied between layers, and unintentionally when the top layer is shifted laterally relative to the bottom layer. We use two band structure characteristics that are directly relevant to transport measurements, the Drude weight and the weak-field Hall conductivity, and relate them via the Hall density to assess the influence of the accidental lateral stacking shifts currently present in all experimental devices on electronic properties, and comment on the role of the possible importance of accidental lateral stacking shifts for superconductivity in twisted trilayers.
The sequence of the zeroth Landau levels (LLs) between filling factors $ u$=-6 to 6 in ABA-stacked trilayer graphene (TLG) is unknown because it depends sensitively on the non-uniform charge distribution on the three layers of ABA-stacked TLG. Using the sensitivity of quantum Hall data on the electric field and magnetic field, in an ultraclean ABA-stacked TLG sample, we quantitatively estimate the non-uniformity of the electric field and determine the sequence of the zeroth LLs. We also observe anticrossings between some LLs differing by 3 in LL index, which result from the breaking of the continuous rotational to textit{C}$_3$ symmetry by the trigonal warping.
Kondo physics in doped monolayer graphene is predicted to exhibit unusual features due to the linear vanishing of the pristine materials density of states at the Dirac point. Despite several attempts, conclusive experimental observation of the phenom enon remains elusive. One likely obstacle to identification is a very small Kondo temperature scale $T_K$ in situations where the chemical potential lies near the Dirac point. We propose tailored mechanical deformations of monolayer graphene as a means of revealing unique fingerprints of the Kondo effect. Inhomogeneous strains are known to produce specific alternating changes in the local density of states (LDOS) away from the Dirac point that signal sublattice symmetry breaking effects. Small LDOS changes can be amplified in an exponential increase or decrease of $T_K$ for magnetic impurities attached at different locations. We illustrate this behavior in two deformation geometries: a circular bubble and a long fold, both described by Gaussian displacement profiles. We calculate the LDOS changes for modest strains and analyze the relevant Anderson impurity model describing a magnetic atom adsorbed in either a top-site or a hollow-site configuration. Numerical renormalization-group solutions of the impurity model suggest that higher expected $T_K$ values, combined with distinctive spatial patterns under variation of the point of graphene attachment, make the top-site configuration the more promising for experimental observation of signatures of the Kondo effect. The strong strain sensitivity of $T_K$ may lift top-site Kondo physics into the range experimentally accessible using local probes such as scanning tunneling microscopy.
The discovery of correlated electronic phases, including Mott-like insulators and superconductivity, in twisted bilayer graphene (TBLG) near the magic angle, and the intriguing similarity of their phenomenology to that of the high-temperature superco nductors, has spurred a surge of research to uncover the underlying physical mechanism. Local spectroscopy, which is capable of accessing the symmetry and spatial distribution of the spectral function, can provide essential clues towards unraveling this puzzle. Here we use scanning tunneling microscopy (STM) and spectroscopy (STS) in magic angle TBLG to visualize the local density of states (DOS) and charge distribution. Doping the sample to partially fill the flat band, where low temperature transport measurements revealed the emergence of correlated electronic phases, we find a pseudogap phase accompanied by a global stripe charge-order whose similarity to high-temperature superconductors provides new evidence of a deeper link underlying the phenomenology of these systems.
The low-energy excitations of graphene are relativistic massless Dirac fermions with opposite chiralities at valleys K and K. Breaking the chiral symmetry could lead to gap opening in analogy to dynamical mass generation in particle physics. Here we report direct experimental evidences of chiral symmetry breaking (CSB) from both microscopic and spectroscopic measurements in a Li-intercalated graphene. The CSB is evidenced by gap opening at the Dirac point, Kekule-O type modulation, and chirality mixing near the gap edge. Our work opens up opportunities for investigating CSB related physics in a Kekule-ordered graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا