ترغب بنشر مسار تعليمي؟ اضغط هنا

155 - K. Schraml , M. Kaniber , J. Bartl 2015
We present numerical studies, nano-fabrication and optical characterization of bowtie nanoantennas demonstrating their superior performance with respect to the electric field enhancement as compared to other Au nanoparticle shapes. For optimized para meters, we found mean intensity enhancement factors >2300x in the feed-gap of the antenna, decreasing to 1300x when introducing a 5nm titanium adhesion layer. Using electron beam lithography we fabricated gold bowties on various substrates with feed-gaps and tip radii as small as 10nm. In polarization resolved measurement we experimentally observed a blue shift of the surface plasmon resonance from 1.72eV to 1.35eV combined with a strong modification of the electric field enhancement in the feed-gap. Under excitation with a 100fs pulsed laser source, we observed non-linear light emission arising from two-photon photoluminescence and second harmonic generation from the gold. The bowtie nanoantenna shows a high potential for outstanding conversion efficiencies and the enhancement of other optical effects which could be exploited in future nanophotonic devices.
We present the simulation, fabrication and optical characterization of plasmonic gold bowtie nanoantennas on a semiconducting GaAs substrate as geometrical parameters such as size, feed gap, height and polarization of the incident light are varied. T he surface plasmon resonance was probed using white light reflectivity on an array of nominally identical, 35nm thick Au antennas. To elucidate the influence of the semiconducting, high refractive index substrate, all experiments were compared using nominally identical structures on glass. Besides a linear shift of the surface plasmon resonance from 1.08eV to 1.58eV when decreasing the triangle size from 170nm to 100nm on GaAs, we observed a global redshift by 0.25 +- 0.05eV with respect to nominally identical structures on glass. By performing polarization resolved measurements and comparing results with finite difference time domain simulations, we determined the near field coupling between the two triangles composing the bowtie antenna to be 8x stronger when the antenna is on a glass substrate compared to when it is on a GaAs substrate. The results obtained are of strong relevance for the integration of lithographically defined plasmonic nanoantennas on semiconducting substrates and, therefore, for the development of novel optically active plasmonic-semiconducting nanostructures.
We present optical investigations of rectangular surface plasmon polariton waveguides lithographically defined on GaAs substrates. The plasmon propagation length is directly determined using a confocal microscope, with independent polarization contro l in both excitation and detection channels. Surface plasmon polaritons are launched along the waveguide using a lithographically defined defect at one end. At the remote end of the waveguide they scatter into the far-field, where they are imaged using a CCD camera. By monitoring the length dependence of the intensity of scattered light from the waveguide end, we directly extract the propagation length, obtaining values ranging from LSPP = 10-40 {mu}m depending on the waveguide width (w=2-5 {mu}m) and excitation wavelength (760-920 nm). Results are in good accord with theoretical expectations demonstrating the high quality of the lithographically defined structures. The results obtained are of strong relevance for the development of future semiconductor based integrated plasmonic technologies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا