ترغب بنشر مسار تعليمي؟ اضغط هنا

We have investigated the impact of Ru substitution on the multi-band electronic structure of FeSe$_{1-x}$Te$_x$ by means of angle-resolved photoemission spectroscopy (ARPES). The ARPES results exhibit suppression of the $xy$ Fermi surface and the spe ctral broadening near the zone boundaries, which can be associated with the lattice disorder introduced by the Ru substitution. The degeneracy of the Fe 3$d$ $yz$/$zx$ bands at the zone center, which is broken in FeSe$_{1-x}$Te$_x$, is partly recovered with the Ru substitution, indicating coexistence of nematic and non-nematic electronic states.
67 - K. Sawada , D. Ootsuki , K. Kudo 2014
Angle-resolved photoemission spectroscopy of Ca10(Ir4As8)(Fe2_xIrxAs2)5 shows that the Fe 3d electrons in the FeAs layer form the hole-like Fermi pocket at the zone center and the electron-like Fermi pockets at the zone corners as commonly seen in va rious Fe-based superconductors. The FeAs layer is heavily electron doped and has relatively good two dimensionality. On the other hand, the Ir 5d electrons are metallic and glassy probably due to atomic disorder related to the Ir 5d orbital instability. Ca10(Ir4As8)(Fe2_xIrxAs2)5 exhibits a unique electronic state where the Bloch electrons in the FeAs layer coexist with the glassy electrons in the Ir4As8 layer.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا