ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of Bloch electrons and glassy electrons in Ca10(Ir4As8)(Fe2_xIrxAs2)5 revealed by angle-resolved photoemission spectroscopy

100   0   0.0 ( 0 )
 نشر من قبل Kei Sawada
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Angle-resolved photoemission spectroscopy of Ca10(Ir4As8)(Fe2_xIrxAs2)5 shows that the Fe 3d electrons in the FeAs layer form the hole-like Fermi pocket at the zone center and the electron-like Fermi pockets at the zone corners as commonly seen in various Fe-based superconductors. The FeAs layer is heavily electron doped and has relatively good two dimensionality. On the other hand, the Ir 5d electrons are metallic and glassy probably due to atomic disorder related to the Ir 5d orbital instability. Ca10(Ir4As8)(Fe2_xIrxAs2)5 exhibits a unique electronic state where the Bloch electrons in the FeAs layer coexist with the glassy electrons in the Ir4As8 layer.



قيم البحث

اقرأ أيضاً

91 - D. Ootsuki , N. L. Saini , F. Du 2015
We report a photoemission study at room temperature on BaFe2X3 (X = S and Se) and CsFe2Se3 in which two-leg ladders are formed by the Fe sites. The Fe 2p core-level peaks of BaFe2X3 are broad and exhibit two components, indicating that itinerant and localized Fe 3d sites coexist similar to KxFe2-ySe2. The Fe 2p core-level peak of CsFe2Se3 is rather sharp and is accompanied by a charge-transfer satellite. The insulating ground state of CsFe2Se3 can be viewed as a Fe2+ Mott insulator in spite of the formal valence of +2.5. The itinerant versus localized behaviors can be associated with the stability of chalcogen p holes in the two-leg ladder structure.
Lattice contribution to the electronic self-energy in complex correlated oxides is a fascinating subject that has lately stimulated lively discussions. Expectations of electron-phonon self-energy effects for simpler materials, such as Pd and Al, have resulted in several misconceptions in strongly correlated oxides. Here we analyze a number of arguments claiming that phonons cannot be the origin of certain self-energy effects seen in high-$T_c$ cuprate superconductors via angle resolved photoemission experiments (ARPES), including the temperature dependence, doping dependence of the renormalization effects, the inter-band scattering in the bilayer systems, and impurity substitution. We show that in light of experimental evidences and detailed simulations, these arguments are not well founded.
We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe$_2$As$_2$, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 K and 300 K, corresponding to the orthorhombic antiferromagnetic phase and the tetragonal paramagnetic phase, respectively. Photon energies between 30 and 175 eV and polarizations parallel and perpendicular to the scattering plane have been used. Measurements of the Fermi surface yield two hole pockets at the $Gamma$-point and an electron pocket at each of the X-points. The topology of the pockets has been concluded from the dispersion of the spectral weight as a function of binding energy. Changes in the spectral weight at the Fermi level upon variation of the polarization of the incident photons yield important information on the orbital character of the states near the Fermi level. No differences in the electronic structure between 20 and 300 K could be resolved. The results are compared with density functional theory band structure calculations for the tetragonal paramagnetic phase.
110 - Ying Ding , Lin Zhao , Hongtao Yan 2019
By partially doping Pb to effectively suppress the superstructure in single-layered cuprate Bi2Sr2CuO6+{delta}(Pb-Bi2201) and annealing them in vacuum or in high pressure oxygen atmosphere, a series of high quality Pb-Bi2201 single crystals are obtai ned with Tc covering from 17 K to non-supercondcuting in the overdoped region. High resolution angle resolved photoemission spectroscopy (ARPES) measurements are carried out on these samples to investigate the evolution of the Fermi surface topology with doping in the normal state. Clear and complete Fermi surface are observed and quantitatively analyzed in all these overdoped Pb-Bi2201 samples. A Lifshitz transition from hole-like Fermi surface to electron like Fermi surface with increasing doping is observed at a doping level of ~0.35. This transition coincides with the change that the sample undergoes from superconducting to non-superconducting states. Our results reveal the emergence of an electron-like Fermi surface and the existence of a Lifshitz transition in heavily overdoped Bi2201 samples. They provide important information in understanding the connection between the disappearance of superconductivity and the Lifshitz transition in the overdoped region.
High resolution laser-based angle-resolved photoemission measurements have been carried out on Bi2Sr2CuO6+d superconductor covering a wide doping range from heavily underdoped to heavily overdoped samples. Two obvious energy scales are identified in the nodal dispersions: one is the well-known 50-80 meV high energy kink and the other is <10 meV low energy kink. The high energy kink increases monotonously in its energy scale with increasing doping and shows weak temperature dependence, while the low energy kink exhibits a non-monotonic doping dependence with its coupling strength enhanced sharply below Tc. These systematic investigations on the doping and temperature dependence of these two energy scales favor electron-phonon interactions as their origin. They point to the importance in involving the electron-phonon coupling in understanding the physical properties and the superconductivity mechanism of high temperature cuprate superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا