ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose an entropy measure for the analysis of chaotic attractors through recurrence networks which are un-weighted and un-directed complex networks constructed from time series of dynamical systems using specific criteria. We show that the propos ed measure converges to a constant value with increase in the number of data points on the attractor (or the number of nodes on the network) and the embedding dimension used for the construction of the network, and clearly distinguishes between the recurrence network from chaotic time series and white noise. Since the measure is characteristic to the network topology, it can be used to quantify the information loss associated with the structural change of a chaotic attractor in terms of the difference in the link density of the corresponding recurrence networks. We also indicate some practical applications of the proposed measure in the recurrence analysis of chaotic attractors as well as the relevance of the proposed measure in the context of the general theory of complex networks.
GRS 1915+105 is a prominent black hole system exhibiting variability over a wide range of time scales and its observed light curves have been classified into 12 temporal states. Here we undertake a complete analysis of these light curves from all the states using various quantifiers from nonlinear time series analysis, such as, the correlation dimension (D_2), the correlation entropy (K_2), singular value decomposition (SVD) and the multifractal spectrum ($f(alpha)$ spectrum). An important aspect of our analysis is that, for estimating these quantifiers, we use algorithmic schemes which we have proposed recently and tested successfully on synthetic as well as practical time series from various fields. Though the schemes are based on the conventional delay embedding technique, they are automated so that the above quantitative measures can be computed using conditions prescribed by the algorithm and without any intermediate subjective analysis. We show that nearly half of the 12 temporal states exhibit deviation from randomness and their complex temporal behavior could be approximated by a few (3 or 4) coupled ordinary nonlinear differential equations. These results could be important for a better understanding of the processes that generate the light curves and hence for modelling the temporal behavior of such complex systems. To our knowledge, this is the first complete analysis of an astrophysical object (let alone a black hole system) using various techniques from nonlinear dynamics.
121 - R. Misra 2006
Using non-linear time series analysis, along with surrogate data analysis, it is shown that the various types of long term variability exhibited by the black hole system GRS 1915+105, can be explained in terms of a deterministic non-linear system wit h some inherent stochastic noise. Evidence is provided for a non-linear limit cycle origin of one of the low frequency QPO detected in the source, while some other types of variability could be due to an underlying low dimensional chaotic system. These results imply that the partial differential equations which govern the magneto-hydrodynamic flow of the inner accretion disk, can be approximated by a small number ($approx 3 -5$) of non-linear but {it ordinary} differential equations. While this analysis does not reveal the exact nature of these approximate equations, they may be obtained in the future, after results of magneto-hydrodynamic simulation of realistic accretion disks become available.
We present an adaptation of the standard Grassberger-Proccacia (GP) algorithm for estimating the Correlation Dimension of a time series in a non subjective manner. The validity and accuracy of this approach is tested using different types of time ser ies, such as, those from standard chaotic systems, pure white and colored noise and chaotic systems added with noise. The effectiveness of the scheme in analysing noisy time series, particularly those involving colored noise, is investigated. An interesting result we have obtained is that, for the same percentage of noise addition, data with colored noise is more distinguishable from the corresponding surrogates, than data with white noise. As examples for real life applications, analysis of data from an astrophysical X-ray object and human brain EEG, are presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا