ﻻ يوجد ملخص باللغة العربية
We present an adaptation of the standard Grassberger-Proccacia (GP) algorithm for estimating the Correlation Dimension of a time series in a non subjective manner. The validity and accuracy of this approach is tested using different types of time series, such as, those from standard chaotic systems, pure white and colored noise and chaotic systems added with noise. The effectiveness of the scheme in analysing noisy time series, particularly those involving colored noise, is investigated. An interesting result we have obtained is that, for the same percentage of noise addition, data with colored noise is more distinguishable from the corresponding surrogates, than data with white noise. As examples for real life applications, analysis of data from an astrophysical X-ray object and human brain EEG, are presented.
Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of models. We assess the strengths and weaknesses of the method by varying coupling strength and noise levels in coupled logistic maps. We find that CC
Multivariate time series with missing values are common in areas such as healthcare and finance, and have grown in number and complexity over the years. This raises the question whether deep learning methodologies can outperform classical data imputa
Analyzing data from paleoclimate archives such as tree rings or lake sediments offers the opportunity of inferring information on past climate variability. Often, such data sets are univariate and a proper reconstruction of the systems higher-dimensi
It is demonstrated how to generate time series with tailored nonlinearities by inducing well- defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities
Natural and social multivariate systems are commonly studied through sets of simultaneous and time-spaced measurements of the observables that drive their dynamics, i.e., through sets of time series. Typically, this is done via hypothesis testing: th