ترغب بنشر مسار تعليمي؟ اضغط هنا

399 - T. Hashimoto , K. Ohta , K. Aoki 2010
We present optical and near infrared observations of GRB 080325 classified as a Dark GRB. Near-infrared observations with Subaru/MOIRCS provided a clear detection of afterglow in Ks band, although no optical counterpart was reported. The flux ratio o f rest-wavelength optical to X-ray bands of the afterglow indicates that the dust extinction along the line of sight to the afterglow is Av = 2.7 - 10 mag. This large extinction is probably the major reason for optical faintness of GRB 080325. The J - Ks color of the host galaxy, (J - Ks = 1.3 in AB magnitude), is significantly redder than those for typical GRB hosts previously identified. In addition to J and Ks bands, optical images in B, Rc, i, and z bands with Subaru/Suprime-Cam were obtained at about one year after the burst, and a photometric redshift of the host is estimated to be z_{photo} = 1.9. The host luminosity is comparable to L^{*} at z sim 2 in contrast to the sub-L^{*} property of typical GRB hosts at lower redshifts. The best-fit stellar population synthesis model for the host shows that a large dust extinction (Av = 0.8 mag) attributes to the red nature of the host and that the host galaxy is massive (M_{*} = 7.0 times 10^{10} Msun) which is one of the most massive GRB hosts previously identified. By assuming that the mass-metallicity relation for star-forming galaxies at z sim 2 is applicable for the GRB host, this large stellar mass suggests the high metallicity environment around GRB 080325, consistent with inferred large extinction.
58 - Y. Matsuda 2007
We present ~2 resolution submillimeter observations of the submillimeter luminous giant Ly-alpha blob (LAB1) in the SSA 22 protocluster at redshift z=3.1 with the Submillimeter Array (SMA). Although the expected submillimeter flux density is 16 mJy a t 880 micron, no emission is detected with the 2.4 x 1.9 (18 x 14 kpc) beam at the 3 sigma level of 4.2 mJy beam^{-1} in the SMA field of view of 35. This is in contrast to the previous lower angular resolution (15) observations where a bright (17 mJy) unresolved submillimeter source was detected at 850 micron toward the LAB1 using the Submillimeter Common-User Bolometer Array on the James Clerk Maxwell Telescope. The SMA non-detection suggests that the spatial extent of the submillimeter emission of LAB1 should be larger than 4 (>30 kpc). The most likely interpretation of the spatially extended submillimeter emission is that starbursts occur throughout the large area in LAB1. Some part of the submillimeter emission may come from spatially extended dust expelled from starburst regions by galactic superwind. The spatial extent of the submillimeter emission of LAB1 is similar to those of high redshift radio galaxies rather than submillimeter galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا