ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Resolution Submillimeter Imaging of the Ly-alpha Blob1 in SSA 22

57   0   0.0 ( 0 )
 نشر من قبل Yuichi Matsuda
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. Matsuda




اسأل ChatGPT حول البحث

We present ~2 resolution submillimeter observations of the submillimeter luminous giant Ly-alpha blob (LAB1) in the SSA 22 protocluster at redshift z=3.1 with the Submillimeter Array (SMA). Although the expected submillimeter flux density is 16 mJy at 880 micron, no emission is detected with the 2.4 x 1.9 (18 x 14 kpc) beam at the 3 sigma level of 4.2 mJy beam^{-1} in the SMA field of view of 35. This is in contrast to the previous lower angular resolution (15) observations where a bright (17 mJy) unresolved submillimeter source was detected at 850 micron toward the LAB1 using the Submillimeter Common-User Bolometer Array on the James Clerk Maxwell Telescope. The SMA non-detection suggests that the spatial extent of the submillimeter emission of LAB1 should be larger than 4 (>30 kpc). The most likely interpretation of the spatially extended submillimeter emission is that starbursts occur throughout the large area in LAB1. Some part of the submillimeter emission may come from spatially extended dust expelled from starburst regions by galactic superwind. The spatial extent of the submillimeter emission of LAB1 is similar to those of high redshift radio galaxies rather than submillimeter galaxies.

قيم البحث

اقرأ أيضاً

61 - Yoichi Tamura 2009
Lyman-alpha emitters are thought to be young, low-mass galaxies with ages of ~10^8 yr. An overdensity of them in one region of the sky (the SSA 22 field) traces out a filamentary structure in the early Universe at a redshift of z = 3.1 (equivalent to 15 per cent of the age of the Universe) and is believed to mark a forming protocluster. Galaxies that are bright at (sub)millimetre wavelengths are undergoing violent episodes of star formation, and there is evidence that they are preferentially associated with high-redshift radio galaxies, so the question of whether they are also associated with the most significant large-scale structure growing at high redshift (as outlined by Lyman-alpha emitters) naturally arises. Here we report an imaging survey of 1,100-um emission in the SSA 22 region. We find an enhancement of submillimetre galaxies near the core of the protocluster, and a large-scale correlation between the submillimetre galaxies and the low-mass Lyman-alpha emitters, suggesting synchronous formation of the two very different types of star-forming galaxy within the same structure at high redshift. These results are in general agreement with our understanding of the formation of cosmic structure.
We present sub-arcsecond resolution IRAM PdBI interferometry of eight submillimeter galaxies at redshifts from 2 to 3.4, where we detect continuum at 1mm and/or CO lines at 3 and 1 mm. The CO 3-2/4-3 line profiles in five of the sources are double-pe aked, indicative of orbital motion either in a single rotating disk or of a merger of two galaxies. The millimeter line and continuum emission is compact; we marginally resolve the sources or obtain tight upper limits to their intrinsic sizes in all cases. The median FWHM diameter for these sources and the previously resolved sources, SMMJ023952-0136 and SMMJ140104+0252 is less than or equal to 0.5 (4 kpc). The compactness of the sources does not support a scenario where the far-IR/submm emission comes from a cold, very extended dust distribution. These measurements clearly show that the submillimeter galaxies we have observed resemble scaled-up and more gas ri
92 - Y. Ao , Y. Matsuda , C. Henkel 2017
We study the heating mechanisms and Ly{alpha} escape fractions of 35 Ly{alpha} blobs (LABs) at z = 3.1 in the SSA22 field. Dust continuum sources have been identified in 11 of the 35 LABs, all with star formation rates (SFRs) above 100 Msun/yr. Likel y radio counterparts are detected in 9 out of 29 investigated LABs. The detection of submm dust emission is more linked to the physical size of the Ly{alpha} emission than to the Ly{alpha} luminosities of the LABs. A radio excess in the submm/radio detected LABs is common, hinting at the presence of active galactic nuclei. Most radio sources without X-ray counterparts are located at the centers of the LABs. However, all X-ray counterparts avoid the central regions. This may be explained by absorption due to exceptionally large column densities along the line-of-sight or by LAB morphologies, which are highly orientation dependent. The median Ly{alpha} escape fraction is about 3% among the submm-detected LABs, which is lower than a lower limit of 11% for the submm-undetected LABs. We suspect that the large difference is due to the high dust attenuation supported by the large SFRs, the dense large-scale environment as well as large uncertainties in the extinction corrections required to apply when interpreting optical data.
We study the average Ly$alpha$ emission associated with high-$z$ strong (log $N$(H I) $ge$ 21) damped Ly$alpha$ systems (DLAs). We report Ly$alpha$ luminosities ($L_{rm Lyalpha}$) for the full as well as various sub-samples based on $N$(H I), $z$, $( r-i)$ colours of QSOs and rest equivalent width of Si II$lambda$1526 line (i.e., $W_{1526}$). For the full sample, we find $L_{rm Lyalpha}$$< 10^{41} (3sigma) rm erg s^{-1}$ with a $2.8sigma$ level detection of Ly$alpha$ emission in the red part of the DLA trough. The $L_{rm Lyalpha}$ is found to be higher for systems with higher $W_{1526}$ with its peak, detected at $geq 3sigma$, redshifted by about 300-400 $rm km s^{-1}$ with respect to the systemic absorption redshift, as seen in Lyman Break Galaxies (LBGs) and Ly$alpha$ emitters. A clear signature of a double-hump Ly$alpha$ profile is seen when we consider $W_{1526} ge 0.4$ AA and $(r-i) < 0.05$. Based on the known correlation between metallicity and $W_{1526}$, we interpret our results in terms of star formation rate (SFR) being higher in high metallicity (mass) galaxies with high velocity fields that facilitates easy Ly$alpha$ escape. The measured Ly$alpha$ surface brightness requires local ionizing radiation that is 4 to 10 times stronger than the metagalactic UV background at these redshifts. The relationship between the SFR and surface mass density of atomic gas seen in DLAs is similar to that of local dwarf and metal poor galaxies. We show that the low luminosity galaxies will contribute appreciably to the stacked spectrum if the size-luminosity relation seen for H I at low-$z$ is also present at high-$z$. Alternatively, large Ly$alpha$ halos seen around LBGs could also explain our measurements.
Observations of the Sun at millimeter and submillimeter wavelengths offer a unique probe into the structure, dynamics, and heating of the chromosphere; the structure of sunspots; the formation and eruption of prominences and filaments; and energetic phenomena such as jets and flares. High-resolution observations of the Sun at millimeter and submillimeter wavelengths are challenging due to the intense, extended, low- contrast, and dynamic nature of emission from the quiet Sun, and the extremely intense and variable nature of emissions associated with energetic phenomena. The Atacama Large Millimeter/submillimeter Array (ALMA) was designed with solar observations in mind. The requirements for solar observations are significantly different from observations of sidereal sources and special measures are necessary to successfully carry out this type of observations. We describe the commissioning efforts that enable the use of two frequency bands, the 3 mm band (Band 3) and the 1.25 mm band (Band 6), for continuum interferometric-imaging observations of the Sun with ALMA. Examples of high-resolution synthesized images obtained using the newly commissioned modes during the solar commissioning campaign held in December 2015 are presented. Although only 30 of the eventual 66 ALMA antennas were used for the campaign, the solar images synthesized from the ALMA commissioning data reveal new features of the solar atmosphere that demonstrate the potential power of ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning efforts will continue to enable new and unique solar observing capabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا