ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical current density (Jc), thermal activation energy (U0), and upper critical field (Hc2) of La1-xSmxO0.5F0.5BiS2 (x = 0.2, 0.8) superconductors are investigated from magnetic field dependent r{ho}(T) studies. The estimated upper critical field ( Hc2) has low values of 1.04 T for x = 0.2 and 1.41 T for x = 0.8. These values are lower than Sm free LaO0.5F0.5BiS2 superconductor (1.9 T). The critical current density (Jc) is estimated to be 1.35*105 A/cm2 and 5.07 *105 A/cm2 (2 K) for x = 0.2 and 0.8 respectively, using the Beans model. The thermal activation energy (U0/kB) is 61 K for x = 0.2 and 140 K for x =0.8 as calculated from Arrhenius plots at low magnetic field (1 T) and indicates a strong flux pinning potential which might be co-existing with applied magnetic field.
We investigate the role of quantum coherence in modulating the energy transfer rate between two independent energy donors and a single acceptor participating in an excitonic energy transfer process. The energy transfer rate depends explicitly on the nature of the initial coherent superposition state of the two donors and we connect it to the observed absorption profile of the acceptor and the stimulated emission profile of the energy donors. We consider simple models with mesoscopic environments interacting with the donors and the acceptor and compare the expression we obtained for the energy transfer rate with the results of numerical integration.
We construct higher order rogue wave solutions and breather profiles for the quasi-one-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap through the similarity transformation technique. We consider three different forms of traps, namely (i) time-independent expulsive trap, (ii) time-dependent monotonous trap and (iii) time-dependent periodic trap. Our results show that when we change a parameter appearing in the time-independent or time-dependent trap the second and third-order rogue waves transform into the first-order like rogue waves. We also analyze the density profiles of breather solutions. Here also we show that the shapes of the breathers change when we tune the strength of trap parameter. Our results may help to manage rogue waves experimentally in a BEC system.
We construct exact solutions for a system of two nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the $big(frac{G}{G }big)$ expansion method, we derive exact solutions to this model for two different wave speeds. For each wave velocity we report three different forms of solutions. We also discuss the biological relevance of the solutions obtained.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا