ترغب بنشر مسار تعليمي؟ اضغط هنا

The valence band of a variety of few-layer, two-dimensional materials consists of a ring of states in the Brillouin zone. The energy-momentum relation has the form of a `Mexican hat or a Rashba dispersion. The two-dimensional density of states is sin gular at or near the band edge, and the band-edge density of modes turns on nearly abruptly as a step function. The large band-edge density of modes enhances the Seebeck coefficient, the power factor, and the thermoelectric figure of merit ZT. Electronic and thermoelectric properties are determined from ab initio calculations for few-layer III-VI materials GaS, GaSe, InS, InSe, for Bi$_{2}$Se$_{3}$, for monolayer Bi, and for bilayer graphene as a function of vertical field. The effect of interlayer coupling on these properties in few-layer III-VI materials and Bi$_{2}$Se$_{3}$ is described. Analytical models provide insight into the layer dependent trends that are relatively consistent for all of these few-layer materials. Vertically biased bilayer graphene could serve as an experimental test-bed for measuring these effects.
86 - K. Lake , S. Weidt , J. Randall 2014
Applying a magnetic field gradient to a trapped ion allows long-wavelength microwave radiation to produce a mechanical force on the ions motion when internal transitions are driven. We demonstrate such a coupling using a single trapped Yb{171}~ion, a nd use it to produce entanglement between the spin and motional state, an essential step towards using such a field gradient to implement multi-qubit operations.
The electronic and thermoelectric properties of one to four monolayers of MoS$_{2}$, MoSe$_{2}$, WS$_{2}$, and WSe$_{2}$ are calculated. For few layer thicknesses,the near degeneracies of the conduction band $K$ and $Sigma$ valleys and the valence ba nd $Gamma$ and $K$ valleys enhance the n-type and p-type thermoelectric performance. The interlayer hybridization and energy level splitting determine how the number of modes within $k_BT$ of a valley minimum changes with layer thickness. In all cases, the maximum ZT coincides with the greatest near-degeneracy within $k_BT$ of the band edge that results in the sharpest turn-on of the density of modes. The thickness at which this maximum occurs is, in general, not a monolayer. The transition from few layers to bulk is discussed. Effective masses, energy gaps, power-factors, and ZT values are tabulated for all materials and layer thicknesses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا