ترغب بنشر مسار تعليمي؟ اضغط هنا

120 - K. Tomiyasu , K. Iwasa , H. Ueda 2014
Spin fluctuations were studied over a wide momentum ($hbar Q$) and energy ($E$) space in the frustrated $d$-electron heavy-fermion metal LiV$_2$O$_4$ by time-of-flight inelastic neutron scattering. We observed the overall $Q$$-$$E$ evolutions near th e characteristic $Q=0.6$ {AA}$^{-1}$ peak and found another weak broad magnetic peak around 2.4 {AA}$^{-1}$. The data are described by a simple response function, a highly itinerant magnetic form factor, and antiferromagnetic short-range spatial correlations, indicating that heavy-fermion formation is attributable to spin-orbit fluctuations with orbital hybridization.
In this study, we performed powder neutron diffraction and inelastic scattering measurements of frustrated pyrochlore Nd$_2$Ir$_2$O$_7$, which exhibits a metal-insulator transition at a temperature $T_{rm MI}$ of 33 K. The diffraction measurements re vealed that the pyrochlore has an antiferromagnetic long-range structure with propagation vector $vec{q}_{0}$ of (0,0,0) and that it grows with decreasing temperature below 15 K. This structure was analyzed to be of the all-in all-out type, consisting of highly anisotropic Nd$^{3+}$ magnetic moments of magnitude $2.3pm0.4$$mu_{rm B}$, where $mu_{rm B}$ is the Bohr magneton. The inelastic scattering measurements revealed that the Kramers ground doublet of Nd$^{3+}$ splits below $T_{rm MI}$. This suggests the appearance of a static internal magnetic field at the Nd sites, which probably originates from a magnetic order consisting of Ir$^{4+}$ magnetic moments. Here, we discuss a magnetic structure model for the Ir order and the relation of the order to the metal-insulator transition in terms of frustration.
42 - K. Kuwahara , K. Iwasa , M. Kohgi 2007
We have performed a single crystal neutron scattering experiment on Ce0.7La0.3B6 to investigate the order parameter of phase IV microscopically. Below the phase transition temperature 1.5 K of phase IV, weak but distinct superlattice reflections at t he scattering vector (h/2,h/2,l/2) (h, l = odd number) have been observed by neutron scattering for the first time. The intensity of the superlattice reflections is stronger for high scattering vectors, which is quite different from the usual magnetic form factor of magnetic dipoles. This result directly evidences that the order parameter of phase IV has a complex magnetization density, consistent with the recent experimental and theoretical prediction in which the order parameter is the magnetic octupoles Tbeta with Gamma5 symmetry of point group Oh. Neutron scattering experiments using short wavelength neutrons, as done in this study, could become a general method to study the high-rank multipoles in f electron systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا