ترغب بنشر مسار تعليمي؟ اضغط هنا

193 - P. Padovani 2015
We study the Extended Chandra Deep Field South (E-CDFS) Very Large Array sample, which reaches a flux density limit at 1.4 GHz of 32.5 microJy at the field centre and redshift ~ 4, and covers ~ 0.3 deg^2. Number counts are presented for the whole sam ple while the evolutionary properties and luminosity functions are derived for active galactic nuclei (AGN). The faint radio sky contains two totally distinct AGN populations, characterised by very different evolutions, luminosity functions, and Eddington ratios: radio-quiet (RQ)/radiative-mode, and radio-loud/jet-mode AGN. The radio power of RQ AGN evolves ~ (1+z)^2.5, similarly to star-forming galaxies, while the number density of radio-loud ones has a peak at ~ 0.5 and then declines at higher redshifts. The number density of radio-selected RQ AGN is consistent with that of X-ray selected AGN, which shows that we are sampling the same population. The unbiased fraction of radiative-mode RL AGN, derived from our own and previously published data, is a strong function of radio power, decreasing from ~ 0.5 at P_1.4GHz ~ 10^24 W/Hz to ~ 0.04$ at P_1.4GHz ~ 10^22 W/Hz. Thanks to our enlarged sample, which now includes ~ 700 radio sources, we also confirm and strengthen our previous results on the source population of the faint radio sky: star-forming galaxies start to dominate the radio sky only below ~ 0.1 mJy, which is also where radio-quiet AGN overtake radio-loud ones.
74 - K. I. Kellermann 2014
Although the extragalactic nature of 3C 48 and other quasi stellar radio sources was discussed as early as 1960 by John Bolton and others, it was rejected largely because of preconceived ideas about what appeared to be unrealistically high radio and optical luminosities. Not until the 1962 occultations of the strong radio source 3C 273 at Parkes, which led Maarten Schmidt to identify 3C 273 with an apparent stellar object at a redshift of 0.16, was the true nature understood. Successive radio and optical measurements quickly led to the identification of other quasars with increasingly large redshifts and the general, although for some decades not universal, acceptance of quasars as the very luminous nuclei of galaxies. Curiously, 3C 273, which is one of the strongest extragalactic sources in the sky, was first cataloged in 1959 and the magnitude 13 optical counterpart was observed at least as early as 1887. Since 1960, much fainter optical counterparts were being routinely identified using accurate radio interferometer positions which were measured primarily at the Caltech Owens Valley Radio Observatory. However, 3C 273 eluded identification until the series of lunar occultation observations led by Cyril Hazard. Although an accurate radio position had been obtained earlier with the OVRO interferometer, inexplicably 3C 273 was initially misidentified with a faint galaxy located about an arc minute away from the true quasar position.
62 - K. I. Kellermann 2014
Although the radio emission from most quasars appears to be associated with star forming activity in the host galaxy, about ten percent of optically selected quasars have very luminous relativistic jets apparently powered by a SMBH which is located a t the base of the jet. When these jets are pointed close to the line of sight their apparent luminosity is enhanced by Doppler boosting and appears highly variable. High resolution radio interferometry shows directly the outflow of relativistic plasma jets from the SMBH. Apparent transverse velocities in these so called blazars are typically about 7c but reach as much as 50c indicating true velocities within one percent of the speed of light. The jets appear to be collimated and accelerated in regions as much as a hundred parsecs downstream from the SMBH. Measurements made with Earth to space interferometers indicate apparent brightness temperatures of about 10E14 K or more. This is well in excess of the limits imposed by inverse Compton cooling. The modest Doppler factors deduced from the observed ejection speeds appear to be inadequate to explain the high observed brightness temperatures in terms of relativistic boosting.
148 - K. I. Kellermann 2013
Although the extragalactic nature of quasars was discussed as early as 1960, it was rejected largely because of preconceived ideas about what appeared to be an unrealistically high radio and optical luminosity. Following the 1962 occultations of the strong radio source 3C 273 at Parkes, and the subsequent identification with an apparent stellar object, Maarten Schmidt recognized that the relatively simple hydrogen line Balmer series spectrum implied a redshift of 0.16 Successive radio and optical measurements quickly led to the identification of other quasars with increasingly large redshifts and the general, although for some decades not universal, acceptance of quasars as being by far the most distant and the most luminous objects in the Universe. Curiously, 3C 273, which is one of the strongest extragalactic sources in the sky, was first cataloged in 1959 and the magnitude 13 optical counterpart was observed at least as early as 1887. Since 1960, much fainter optical counterparts were being routinely identified using accurate radio interferometer positions, measured primarily at the Caltech Owens Valley Radio Observatory. However, 3C 273 eluded identification until the series of lunar occultation observations led by Cyril Hazard, although inexplicably there was an earlier mis-identification with a faint galaxy located about an arc minute away from the true position. Ironically, due to calculation error, the occultation position used by Schmidt to determine the redshift of 3C 273 was in error by 14 arcseconds, and a good occultation position was not derived until after Schmidt had obtained his 200 inch spectrum.
We used the 1.4 GHz NVSS to study radio sources in two color-selected QSO samples: a volume-limited sample of 1313 QSOs defined by M_i < -23 in the redshift range 0.2 < z < 0.45 and a magnitude-limited sample of 2471 QSOs with m_r < 18.5 and 1.8 < z < 2.5. About 10% were detected above the 2.4 mJy NVSS catalog limit and are powered primarily by AGNs. The space density of the low-redshift QSOs evolves as rho proportional to (1+z)^6. In both redshift ranges the flux-density distributions and luminosity functions of QSOs stronger than 2.4 mJy are power laws, with no features to suggest more than one kind of radio source. Extrapolating the power laws to lower luminosities predicts the remaining QSOs should be extremely radio quiet, but they are not. Most were detected statistically on the NVSS images with median peak flux densities S_p(mJy/beam) ~ 0.3 and 0.05 in the low- and high-redshift samples, corresponding to 1.4 GHz spectral luminosities log[L(W/Hz)] ~ 22.7$ and 24.1, respectively. We suggest that the faint radio sources are powered by star formation at rates ~20 M_sun per year in the moderate luminosity (median M_i ~ -23.4) low-redshift QSOs and ~500 M_sun per year in the very luminous (M_i} ~ -27.5) high-redshift QSOs. Such luminous starbursts [ log(L / L_sun) ~ 11.2 and 12.6, respectively] are consistent with quasar mode accretion in which cold gas flows fuel both AGN and starburst.
139 - P. Padovani 2011
We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South VLA survey, which reaches a flux density limit at 1.4 GHz of 43 microJy at the field center and redshift ~5, and which incl udes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGN). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies from AGN and radio-quiet from radio-loud AGN. We confirm our previous result that star-forming galaxies become dominant only below 0.1 mJy. The sub-mJy radio sky turns out to be a complex mix of star-forming galaxies and radio-quiet AGN evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P > 3 10^24 W/Hz) AGN. Our results suggest that radio emission from radio-quiet AGN is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGN can be explained by the co-existence of two components, one non-evolving and AGN-related and one evolving and star-formation-related. Radio-quiet AGN are an important class of sub-mJy sources, accounting for ~30% of the sample and ~60% of all AGN, and outnumbering radio-loud AGN at < 0.1 mJy. This implies that future, large area sub-mJy surveys, given the appropriate ancillary multi-wavelength data, have the potential of being able to assemble vast samples of radio-quiet AGN by-passing the problems of obscuration, which plague the optical and soft X-ray bands.
111 - K. I. Kellermann 2008
The major multi-epoch VLBA programs are described and discussed in terms of relativistic beaming models. Broadly speaking the observed kinematics are consistent with models having a parent population which is only mildly relativistic but with Lorentz factors extending up to about 30. While the collimation and acceleration appears to mainly occur close to the central engine, there is evidence of accelerations up to 1 kpc downstream. Generally the motion appears to be linear, but in some sources the motion follows a curved trajectory. In other sources, successive features appear to be ejected in different directions possibly the result of a precessing nozzle. The launch of GLAST in 2008 will offer new opportunities to study the relation between radio and gamma-ray activity, and possibly to locate the source of the gamma-ray emission. VSOP-2 will give enhanced resolution and will facilitate the study of the two-dimensional structure of relativistic jets, while RadioAstron will provide unprecedented resolution to study the fine scale structure of the jet base.
We discuss results from a decade long program to study the fine-scale structure and the kinematics of relativistic AGN jets with the aim of better understanding the acceleration and collimation of the relativistic plasma forming AGN jets. From the ob served distribution of brightness temperature, apparent velocity, flux density, time variability, and apparent luminosity, the intrinsic properties of the jets including Lorentz factor, luminosity, orientation, and brightness temperature are discussed. Special attention is given to the jet in M87, which has been studied over a wide range of wavelengths and which, due to its proximity, is observed with excellent spatial resolution. Most radio jets appear quite linear, but we also observe curved non-linear jets and non-radial motions. Sometimes, different features in a given jet appear to follow the same curved path but there is evidence for ballistic trajectories as well. The data are best fit with a distribution of Lorentz factors extending up to gamma ~30 and intrinsic luminosity up to ~10^26 W/Hz. In general, gamma-ray quasars may have somewhat larger Lorentz factors than non gamma-ray quasars. Initially the observed brightness temperature near the base of the jet extend up to ~5x10^13 K which is well in excess of the inverse Compton limit and corresponds to a large excess of particle energy over magnetic energy. However, more typically, the observed brightness temperatures are ~2x10^11 K, i.e., closer to equipartition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا