ترغب بنشر مسار تعليمي؟ اضغط هنا

95 - A. S. Botvina 2013
Within a dynamical and statistical approach we study the main regularities in production of hypernuclei coming from projectile and target residues in relativistic ion collisions. We demonstrate that yields of hypernuclei increase considerably above t he energy threshold for Lambda hyperons, and there is a saturation for yields of single hypernuclei with increasing the beam energy up to few TeV. Production of specific hypernuclei depend very much on the isotopic composition of the projectile, and this gives a chance to obtain exotic hypernuclei that may be difficult to reach in traditional hypernuclear experiments. Possibilities for the detection of such hypernuclei with planned and available relativistic ion facilities are discussed.
We study the production of (hyper-)nuclei and di-baryons in most central heavy Ion collisions at energies of $E_{lab}=1-160 A$ GeV. In particular we are interested in clusters produced from the hot and dense fireball. The formation rate of strange an d non-strange clusters is estimated by assuming thermal production from the intermediate phase of the UrQMD-hydro hybrid model and alternatively by the coalescence mechanism from a hadronic cascade model. Both model types are compared in detail. For most energies we find that both approaches agree in their predictions for the yields of the clusters. Only for very low beam energies, and for di-baryons including $Xi$s, we observe considerable differences. We also study the production of anti-matter clusters up to top RHIC energies and show that the observation of anti-$^4He$ and even anti-$^4_{Lambda}He$ is feasible. We have found a considerable qualitative difference in the energy dependence of the strangeness population factor $R_H$ when comparing the thermal production with the coalescence results.
Two major aspects of strange particle physics at the upcoming FAIR and NICA facilities and the RHIC low energy scan will be discussed. A new distinct production mechanism for hypernuclei will be presented, namely the production abundances for hypernu clei from $Lambda$s absorbed in the spectator matter in peripheral heavy ion collisions. As strangeness is not uniformly distributed in the fireball of a heavy ion collision, the properties of the equation of state therefore depend on the local strangeness fraction. The same, inside neutron stars strangeness is not conserved and lattice studies on the properties of finite density QCD usually rely on an expansion of thermodynamic quantities at zero strange chemical potential, hence at non-zero strange-densities. We will therefore discuss recent investigations on the EoS of strange-QCD and present results from an effective EoS of QCD that includes the correct asymptotic degrees of freedom and a deconfinement and chiral phase transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا