ترغب بنشر مسار تعليمي؟ اضغط هنا

We study low-temperature transport through a Coulomb blockaded quantum dot (QD) contacted by a normal (N), and a superconducting (S) electrode. Within an effective cotunneling model the conduction electron self energy is calculated to leading order i n the cotunneling amplitudes and subsequently resummed to obtain the nonequilibrium T-matrix, from which we obtain the nonlinear cotunneling conductance. For even occupied dots the system can be conceived as an effective S/N-cotunnel junction with subgap transport mediated by Andreev reflections. The net spin of an odd occupied dot, however, leads to the formation of sub-gap resonances inside the superconducting gap which gives rise to a characteristic peak-dip structure in the differential conductance, as observed in recent experiments.
We present measurements of temperature and magnetic field dependence of the critical current and excess current in a carbon nanotube Josephson quantum dot junction. The junction is fabricated in a controlled environment which allows for extraction of the full critical current. The measurements are performed in the open quantum dot regime, and fitted to theory with good qualitative agreement. We also show how to extract level spacing, level broadening, and charging energy of an open quantum dot from a bias spectroscopy plot.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا