ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical and excess current through an open quantum dot: Temperature and magnetic field dependence

69   0   0.0 ( 0 )
 نشر من قبل Henrik Ingerslev J{\\o}rgensen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of temperature and magnetic field dependence of the critical current and excess current in a carbon nanotube Josephson quantum dot junction. The junction is fabricated in a controlled environment which allows for extraction of the full critical current. The measurements are performed in the open quantum dot regime, and fitted to theory with good qualitative agreement. We also show how to extract level spacing, level broadening, and charging energy of an open quantum dot from a bias spectroscopy plot.

قيم البحث

اقرأ أيضاً

We present measurements of the superconducting critical temperature Tc and upper critical field Hc2 as a function of pressure in the transition metal dichalcogenide 2H-NbS2 up to 20 GPa. We observe that Tc increases smoothly from 6K at ambient pressu re to about 8.9K at 20GPa. This range of increase is comparable to the one found previously in 2H-NbSe2. The temperature dependence of the upper critical field Hc2(T) of 2H-NbS2 varies considerably when increasing the pressure. At low pressures, Hc2(0) decreases, and at higher pressures both Tc and Hc2(0) increase simultaneously. This points out that there are pressure induced changes of the Fermi surface, which we analyze in terms of a simplified two band approach.
In this paper we determine the magnetic field dependence of the critical current of a tridimensional disordered Josephson junction array (3D-DJJA). A contactless configuration, employing measurements of the AC-susceptibility, is used to evaluate the average critical current of an array of YBa2Cu3O7-x. The critical field necessary to switch off supercurrents through the weak links at the working temperature is also obtained.
We study the critical current I_c dependence on applied magnetic field H for multifacet YBa_2Cu_3O_{7-delta}-Au-Nb ramp-type zigzag Josephson junctions. For many experiments one would like to apply a homogeneous field in the junction plane. However, even tiny misalignments can cause drastic deviations from homogeneity. We show this explicitly by measuring and analyzing I_c vs. H for an 8 facet junction, forming an array of 4times(0-pi)-segments. The ramp angle is theta_r=8^circ. The facet width is 10,mum. H is applied under different angles theta relative to the substrate plane and different angles phi relative to the in-plane orientation of the zigzags. We find that a homogeneous flux distribution is only achieved for an angle theta_happrox 1^circ - 2^circ and that even a small misalignment sim 0.1^circ relative to theta_h can cause a substantial inhomogeneity of the flux density inside the junction, drastically altering its I_c vs. H interference pattern. We also show, that there is a dead angle theta^*_d relative to theta_h of similar magnitude, where the average flux density completely vanishes.
Recently, we showed that the self-field transport critical current, Ic(sf), of a superconducting wire can be defined in a more fundamental way than the conventional (and arbitrary) electric field criterion, Ec = 1 microV/cm. We defined Ic(sf) as the threshold current, Ic,B, at which the perpendicular component of the local magnetic flux density, measured at any point on the surface of a high-temperature superconducting tape, abruptly crosses over from a non-linear to a linear dependence with increasing transport current. This effect results from the current distribution across the tape width progressively transitioning from non-uniform to uniform. The completion of this progressive transition was found to be singular. It coincides with the first discernible onset of dissipation and immediately precedes the formation of a measureable electric field. Here, we show that the same Ic,B definition of critical currents applies in the presence of an external applied magnetic field. In all experimental data presented here Ic,B is found to be significantly (10-30%) lower than Ic,E determined by the common electric field criterion of Ec = 1 microV/cm, and Ec to be up to 50 times lower at Ic,B than at Ic,E.
86 - Y. Jia , M. LeRoux , D. J. Miller 2013
The in-field critical current of commercial YBa2Cu3O7 coated conductors can be substantially enhanced by post-fabrication irradiation with 4 MeV protons. Irradiation to a fluence of 8x10^16 p/cm^2 induces a near doubling of the critical current in fi elds of 6 T || c at a temperature of 27 K, a field and temperature range of interest for applications such as rotating machinery. A mixed pinning landscape of preexisting precipitates and twin boundaries and small, finely dispersed irradiation induced defects may account for the improved vortex pinning in high magnetic fields. Our data indicate that there is significant head-room for further enhancements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا