ترغب بنشر مسار تعليمي؟ اضغط هنا

The electronic, magnetic and transport properties of Fe intercalated 2H-TaS$_2$ have been investigated by means of the Korringa-Kohn-Rostoker (KKR) method. The non-stoichiometry and disorder in the system has been accounted for using the Coherent Pot ential Approximation (CPA) alloy theory. A pronounced influence of disorder on the spin magnetic moment has been found for the ferro-magnetically ordered material. The same applies for the spin-orbit induced orbital magnetic moment and magneto-crystalline anisotropy energy. The temperature-dependence of the resistivity of disordered 2H-Fe$_{0.28}$TaS$_2$ investigated on the basis of the Kubo-Stv{r}eda formalism in combination with the alloy analogy model has been found in very satisfying agreement with experimental data. This also holds for the temperature dependent anomalous Hall resistivity $ rho_{rm xy}(T) $. The role of thermally induced lattice vibrations and spin fluctuations for the transport properties is discussed in detail.
A scheme is presented that is based on the alloy analogy model and allows to account for thermal lattice vibrations as well as spin fluctuations when calculating response quantities in solids. Various models to deal with spin fluctuations are discuss ed concerning their impact on the resulting temperature dependent magnetic moment, longitudinal conductivity and Gilbert damping parameter. It is demonstrated that using the Monte Carlo (MC) spin configuration as an input, the alloy analogy model is capable to reproduce results of MC simulations on the average magnetic moment within all spin fluctuation models under discussion. On the other hand, response quantities are much more sensitive to the spin fluctuation model. Separate calculations accounting for either the thermal effect due to lattice vibrations or spin fluctuations show their comparable contributions to the electrical conductivity and Gilbert damping. However, comparison to results accounting for both thermal effects demonstrate violation of Matthiessens rule, showing the non-additive effect of lattice vibrations and spin fluctuations. The results obtained for bcc Fe and fcc Ni are compared with the experimental data, showing rather good agreement for the temperature dependent electrical conductivity and Gilbert damping parameter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا