ترغب بنشر مسار تعليمي؟ اضغط هنا

The thermal conductivity measurements have been performed on the heavy-fermion compound YbRh2Si2 down to 0.04 K and under magnetic fields through a quantum critical point (QCP) at Bc = 0.66 T || c-axis. In the limit as T -> 0, we find that the Wiedem ann-Franz law is satisfied within experimental error at the QCP despite the destruction of the standard signature of Fermi liquid. Our results place strong constraints on models that attempt to describe the nature of unconventional quantum criticality of YbRh2Si2.
The thermoelectric coefficients have been measured on the Yb-based heavy fermion compounds beta-YbAlB4 and YbRh2Si2 down to a very low temperature. We observe a striking difference in the behavior of the Seebeck coefficient, S in the vicinity of the Quantum Critical Point (QCP) in the two systems. As the critical field is approached, S/T enhances in beta-YbAlB4 but is drastically reduced in YbRh2Si2. While in the former system, the ratio of thermopower-to-specific heat remains constant, it drastically drops near the QCP in YbRh2Si2. In both systems, on the other hand, the Nernst coefficient shows a diverging behavior near the QCP. The results provide a new window to the way various energy scales of the system behave and eventually vanish near a QCP.
Thermal transport measurements have been performed on single-crystalline Co-doped BaFe2As2 down to 0.1 K and under magnetic fields up to 7 T. Significant peak anomalies are observed in both thermal conductivity and thermal Hall conductivity below Tc as an indication of the enhancement of the quasiparticle mean-free path. Moreover, we find a sizable residual T-linear term in thermal conductivity, possibly due to a finite quasiparticle density of states in the superconducting gap induced by impurity pair breaking. Our findings support a pairing symmetry compatible with the theoretically predicted sign-reversing s-wave state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا