ترغب بنشر مسار تعليمي؟ اضغط هنا

Aim: The late stages of stellar evolution are mainly governed by the mass of the stars. Low- and intermediate-mass stars lose copious amounts of mass during the asymptotic giant branch (AGB) which obscure the central star making it difficult to study the stellar spectra and determine the stellar mass. In this study, we present observational data that can be used to determine lower limits to the stellar mass. Method: Spectra of nine heavily reddened AGB stars taken by the Herschel Space Observatory display numerous molecular emission lines. The strongest emission lines are due to H2O. We search for the presence of isotopologues of H2O in these objects. Result: We detected the 16O and 17O isotopologues of water in these stars, but lines due to H2^{18}O are absent. The lack of 18O is predicted by a scenario where the star has undergone hot-bottom burning which preferentially destroys 18O relative to 16O and 17O. From stellar evolution calculations, this process is thought to occur when the stellar mass is above 5 Msun for solar metallicity. Hence, observations of different isotopologues of H2O can be used to help determine the lower limit to the initial stellar mass. Conclusion: From our observations, we deduce that these extreme OH/IR stars are intermediate-mass stars with masses of >= 5 Msun. Their high mass-loss rates of ~ 1.0e-4 Msun/yr may affect the enrichment of the interstellar medium and the overall chemical evolution of our Galaxy.
78 - K. Justtanont 2013
Aim : In order to study the history of mass loss in extreme OH/IR stars, we observed a number of these objects using CO as a tracer of the density and temperature structure of their circumstellar envelopes. Method : Combining CO observations from t he Herschel Space Observatory with those from the ground, we trace mass loss rates as a function of radius in five extreme OH/IR stars. Using radiative transfer modelling, we modelled the dusty envelope as well as the CO emission. The high-rotational transitions of CO indicate that they originate in a dense superwind region close to the star while the lower transitions tend to come from a more tenuous outer wind which is a result of the mass loss since the early AGB phase. Result : The models of the circumstellar envelopes around these stars suggest that they have entered a superwind phase in the past 200 - 500 years. The low 18O/17O (~ 0.1 compared to the solar abundance ratio of ~ 5) and 12C/13C (3-30 cf. the solar value of 89) ratios derived from our study support the idea that these objects have undergone hot-bottom burning and hence that they are massive M >= 5 solar-mass AGB stars.
Spectra, taken with the heterodyne instrument, HIFI, aboard the Herschel Space Observatory, of O-rich asymptotic giant branch (AGB) stars which form part of the guaranteed time key program HIFISTARS are presented. The aim of this program is to study the dynamical structure, mass-loss driving mechanism, and chemistry of the outflows from AGB stars as a function of chemical composition and initial mass. We used the HIFI instrument to observe nine AGB stars, mainly in the H2O and high rotational CO lines We investigate the correlation between line luminosity, line ratio and mass-loss rate, line width and excitation energy. A total of nine different molecules, along with some of their isotopologues have been identified, covering a wide range of excitation temperature. Maser emission is detected in both the ortho- and para-H2O molecules. The line luminosities of ground state lines of ortho- and para-H2O, the high-J CO and NH3 lines show a clear correlation with mass-loss rate. The line ratios of H2O and NH3 relative to CO J=6-5 correlate with the mass-loss rate while ratios of higher CO lines to the 6-5 is independent of it. In most cases, the expansion velocity derived from the observed line width of highly excited transitions formed relatively close to the stellar photosphere is lower than that of lower excitation transitions, formed farther out, pointing to an accelerated outflow. In some objects, the vibrationally excited H2O and SiO which probe the acceleration zone suggests the wind reaches its terminal velocity already in the innermost part of the envelope, i.e., the acceleration is rapid. Interestingly, for R Dor we find indications of a deceleration of the outflow in the region where the material has already escaped from the star.
A set of new, sensitive, and spectrally resolved, sub-millimeter line observations are used to probe the warm circumstellar gas around the S-type AGB star chi Cyg. The observed lines involve high rotational quantum numbers, which, combined with previ ously obtained lower-frequency data, make it possible to study in detail the chemical and physical properties of, essentially, the entire circumstellar envelope of chi Cyg. The data were obtained using the HIFI instrument aboard Herschel, whose high spectral resolution provides valuable information about the line profiles. Detailed, non-LTE, radiative transfer modelling, including dust radiative transfer coupled with a dynamical model, has been performed to derive the temperature, density, and velocity structure of the circumstellar envelope. We report the first detection of circumstellar H2O rotational emission lines in an S-star. Using the high-J CO lines to derive the parameters for the circumstellar envelope, we modelled both the ortho- and para-H2O lines. Our modelling results are consistent with the velocity structure expected for a dust-driven wind. The derived total H2O abundance (relative to H2) is (1.1 +/- 0.2)E-5, much lower than that in O-rich stars. The derived ortho-to-para ratio of 2.1 +/- 0.6 is close to the high-temperature equilibrium limit, consistent with H2O being formed in the photosphere.
A search for the near-infrared water-ice absorption band was made in a number of very red OH/IR stars which are known to exhibit the 10um silicate absorption. As a by-product, accurate positions of these highly reddened objects are obtained. We deriv ed a dust mass loss rate for each object by modelling the spectral energy distribution and the gas mass loss rate by solving the equation of motion for the dust drag wind. The derived mass loss rates show a strong correlation with the silicate optical depth as well as that of the water-ice. The stars have a high mass loss rate (> 1.0E-4 Msun/yr) with an average gas-to-dust mass ratio of 110. In objects which show the 3.1um water-ice absorption, the near-IR slope is much steeper than those with no water-ice. Comparison between our calculated mass loss rates and those derived from OH and CO observations indicates that these stars have recently increased their mass loss rates.
Far infrared fine structure line data from the ISO archive have been extracted for several hundred YSOs and their outflows, including molecular (CO) outflows, optical jets and Herbig-Haro (HH) objects. Given the importance of these lines to astrophys ics, their excitation and transfer ought to be investigated in detail and, at this stage, the reliability of the diagnostic power of the fine structure transitions of O I and C II has been examined. Several issues, such as the extremely small intensity ratios of the oxygen 63 micron to 145 micron lines, are still awaiting an explanation. It is demonstrated that, in interstellar cloud conditions, the 145 micron line is prone to masing, but that this effect is likely an insufficient cause of the line ratio anomaly observed from cold dark clouds. Very optically thick emission could in principle also account for this, but would need similar, prohibitively high column densities and must therefore be abondoned as a viable explanation. One is left with [O I] 63 micron self absorption by cold and tenuous foreground gas, as has been advocated for distant luminous sources. Recent observations with the submillimeter observatory Odin support this scenario also in the case of nearby dark molecular clouds. On the basis of this large statistical material we are led to conclude that in star forming regions, the [O I] and [C II] lines generally have only limited diagnostic value.
We present Odin observations of the AGB star W Hya in the ground-state transition of ortho-H2O, 1(10)-1(01), at 557GHz. The line is clearly of circumstellar origin. Radiative transfer modelling of the water lines observed by Odin and ISO results in a mass-loss rate of (2.5 +/- 0.5)E-7 Msol/yr, and a circumstellar H2O abundance of (2.0 +/- 1.0)E-3. The inferred mass-loss rate is consistent with that obtained from modelling the circumstellar CO radio line emission, and also with that obtained from the dust emission modelling combined with a dynamical model for the outflow. The very high water abundance, higher than the cosmic oxygen abundance, can be explained by invoking an injection of excess water from evaporating icy bodies in the system. The required extra mass of water is quite small, on the order of ~ 0.1 earth mass.
Infrared spectroscopy is a powerful tool to probe the inventory of solid state and molecular species in circumstellar ejecta. Here we analyse the infrared spectrum of the Asymptotic Giant Branch star W Hya, obtained by the Short and Long Wavelength S pectrometers on board of the Infrared Satellite Observatory. These spectra show evidence for the presence of amorphous silicates, aluminum oxide, and magnesium-iron oxide grains. We have modelled the spectral energy distribution using laboratory measured optical properties of these compounds and derive a total dust mass loss rate of 3E-10 Msol/yr. We find no satisfactory fit to the 13 micron dust emission feature and the identification of its carrier is still an open issue. We have also modelled the molecular absorption bands due to H2O, OH, CO, CO2, SiO, and SO2 and estimated the excitation temperatures for different bands which range from 300 to 3000K. It is clear that different molecules giving rise to these absorption bands originate from different gas layers. We present and analyse high resolution Fabry-Perot spectra of the three CO2 bands in the 15 micron region. In these data, the bands are resolved into individual Q-lines in emission, which allows the direct determination of the excitation temperature and column density of the emitting gas. This reveals the presence of a warm (about 450K) extended layer of CO2, somewhere between the photosphere and the dust formation zone. The gas in this layer is cooler than the 1000K CO2 gas responsible for the low-resolution absorption bands at 4.25 and 15 micron. The rotational and vibrational excitation temperatures derived from the individual Q-branch lines of CO2 are different (450K and 150K, respectively) so that the CO2 level population is not in LTE.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا