ترغب بنشر مسار تعليمي؟ اضغط هنا

70 - M. Vasiliev , K. Alameh , 2019
MPC (Magneto-Photonic Crystal) Optimisation is a feature-rich Windows software application designed to enable researchers to analyze the optical and magneto-optical spectral properties of multilayers containing gyrotropic constituents. A set of compu tational algorithms aimed at enabling the design optimization and optical or magneto-optical (MO) spectral analysis of 1D magnetic photonic crystals (MPC) is reported, together with its Windows software implementation. Relevant material property datasets (e.g., the optical spectra of refractive index, absorption, and gyration) of several important optical and MO materials are included, enabling easy reproduction of the previously published results from the field of MPC-based Faraday rotator development, and an effective demonstration-quality introduction of future users to the multiple features of this package. We also report on the methods and algorithms used to obtain the absorption coefficient spectral dispersion datasets for new materials, for which the film thickness, transmission spectrum, and refractive index dispersion function are known.
We investigate the existence of the $macroscopic$ $quantum$ $phase$ in trapped ultracold quantum degenerate gases, such as Bose-Einstein condensate, in an asymmetrical two-dimensional magnetic lattice. We show the key to adiabatically control the tun neling in the new two-dimensional magnetic lattice by means of external magnetic bias fields. The macroscopic quantum phase signature is identified as a Rabi-like oscillation when solving the system of coupled time-dependent differential equations, described here by the Boson Josephson Junctions (BJJs). In solving the system of the BJJs we used an order parameter that includes both time-dependent variational parameters which are the fractional population at each lattice site and the phase difference. The BJJs solution presents a clear evidence for the macroscopic quantum coherence.
An asymmetric multi-quantum state magnetic lattice is proposed to host excitons formed in a quantum degenerate gas of ultracold fermionic atoms to simulate Bose-Einstein condensation (BEC) of excitons. A Quasi-two dimensional degenerate gas of excito ns can be collected in the in-plane asymmetric magnetic bands created at the surface of the proposed magnetic lattice, where the ultracold fermions simulate separately direct and indirect confined electronhole pairs (spin up fermions-spin down fermions) rising to the statistically degenerate Bose gas and eventually through controlled tunnelling to BEC of excitons. The confinement of the coupled magnetic quantum well (CMQWs) system may significantly improve the condition for long lived exciton BEC. The exciton BEC, formed in CMQWs can be regarded as a suitable host for the multi-qubits (multipartite) systems to be used in quantum information processors.
Magnetooptical properties of magnetic photonic crystals have been investigated in the view of their possible applications for the modern integrated-optics devices. A transfer matrices formalism was expanded for the case of oblique light incidence on the periodic nanoscaled magnetic multilayered systems. Several new effects such as the Faraday effect dependence on the incidence angle and the tunability of the bandgap defect modes spectral location by external magnetic fields were found. Several possibilities of one-dimensional magnetic photonic crystals applications for the optical devices are discussed. Initial steps towards the practical implementation of the proposed devices are reported.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا