ترغب بنشر مسار تعليمي؟ اضغط هنا

Macroscopic Rabi-Like Oscillations of Ultracold Atoms in an Asymmetrical Two-Dimensional Magnetic Lattice

243   0   0.0 ( 0 )
 نشر من قبل Ahmed Abdelrahman
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the existence of the $macroscopic$ $quantum$ $phase$ in trapped ultracold quantum degenerate gases, such as Bose-Einstein condensate, in an asymmetrical two-dimensional magnetic lattice. We show the key to adiabatically control the tunneling in the new two-dimensional magnetic lattice by means of external magnetic bias fields. The macroscopic quantum phase signature is identified as a Rabi-like oscillation when solving the system of coupled time-dependent differential equations, described here by the Boson Josephson Junctions (BJJs). In solving the system of the BJJs we used an order parameter that includes both time-dependent variational parameters which are the fractional population at each lattice site and the phase difference. The BJJs solution presents a clear evidence for the macroscopic quantum coherence.



قيم البحث

اقرأ أيضاً

131 - S. Rosi , A. Bernard , N. Fabbri 2013
We present experimental evidence of the successful closed-loop optimization of the dynamics of cold atoms in an optical lattice. We optimize the loading of an ultracold atomic gas minimizing the excitations in an array of one-dimensional tubes (3D-1D crossover) and we perform an optimal crossing of the quantum phase-transition from a Superfluid to a Mott-Insulator in a three-dimensional lattice. In both cases we enhance the experiment performances with respect to those obtained via adiabatic dynamics, effectively speeding up the process by more than a factor three while improving the quality of the desired transformation.
Atomic interferometry in optical lattices is a new trend of developing practical quantum gravimeter. Here, we propose a compact and portable gravimetry scheme with an ensemble of ultracold atoms in gravitationally tilted spin-dependent optical lattic es. The fast, coherent separation and recombination of atoms can be realized via polarization-synthesized optical lattices. The input atomic wavepacket is coherently split into two parts by a spin-dependent shift and a subsequent $frac{pi}{2}$ pulse. Then the two parts are held for accumulating a relative phase related to the gravity. Lastly the two parts are recombined for interference by a $frac{pi}{2}$ pulse and a subsequent spin-dependent shift. The $frac{pi}{2}$ pulses not only preclude the spin-dependent energies in the accumulated phase, but also avoid the error sources such as dislocation of optical lattices in the holding process. In addition, we develop an analytical method for the sensitivity in multi-path interferometry.
A new method to implement an asymmetrical two-dimensional magnetic lattice is proposed. The asymmetrical two-dimensional magnetic lattice can be created by periodically distributing magnetic minima across the surface of magnetic thin film where the p eriodicity can be achieved by milling $ntimes n$ square holes on the surface of the film. The quantum device is proposed for trapping and confining ultracold atoms and quantum degenerate gases prepared in the low magnetic field seeking-state at low temperature, such as the Bose-Einstein Condensate (BEC) and ultracold fermions. We present detailed analysis of the analytical expressions and the numerical simulation procedure used to calculate the external magnetic field. We also, describe the magnetic band gap structure exhibited by the asymmetric effect of the magnetic minima and show some of the possible application. We analyze the effect of changing the characteristic parameters of the magnetic lattice, such as the separating periodicity length and the hole size along with the applications of the external magnetic bias fields to maintain and allocate a suitable non-zero magnetic local minima at effective $z$-distance above the thin film surface. Suitable values are shown which keep the trapped ultracold atoms away from the thermal Majorana spin-flip and the surface Casimir-Polder effect.
The well-known laser-induced Rabi oscillations of a two-level atom are shown to be suppressed under certain conditions when the atom is entering a laser-illuminated region. For temporal Rabi oscillations the effect has two regimes: classical-like, at intermediate atomic velocities, and quantum at low velocities, associated respectively with the formation of incoherent or coherent internal states of the atom in the laser region. In the low velocity regime the laser projects the atom onto a pure internal state that can be controlled by detuning. Spatial Rabi oscillations are only suppressed in this low velocity, quantum regime.
The quantum Rabi model describes the interaction between a two-level quantum system and a single bosonic mode. We propose a method to perform a quantum simulation of the quantum Rabi model introducing a novel implementation of the two-level system, p rovided by the occupation of Bloch bands in the first Brillouin zone by ultracold atoms in tailored optical lattices. The effective qubit interacts with a quantum harmonic oscillator implemented in an optical dipole trap. Our realistic proposal allows to experimentally investigate the quantum Rabi model for extreme parameter regimes, which are not achievable with natural light-matter interactions. Furthermore, we also identify a generalized version of the quantum Rabi model in a periodic phase space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا