ترغب بنشر مسار تعليمي؟ اضغط هنا

152 - Marzieh Eidi , Jurgen Jost 2021
We construct a Floer type boundary operator for generalised Morse-Smale dynamical systems on compact smooth manifolds by counting the number of suitable flow lines between closed (both homoclinic and periodic) orbits and isolated critical points. The same principle works for the discrete situation of general combinatorial vector fields, defined by Forman, on CW complexes. We can thus recover the $mathbb{Z}_2$ homology of both smooth and discrete structures directly from the flow lines (V-paths) of our vector field.
79 - Jurgen Jost 2020
In computer science, we can theoretically neatly separate transmission and processing of information, hardware and software, and programs and their inputs. This is much more intricate in biology, Nevertheless, I argue that Shannons concept of informa tion is useful in biology, although its application is not as straightforward as many people think. In fact, the recently developed theory of information decomposition can shed much light on the complementarity between coding and regulatory, or internal and environmental information. The key challenge that we formulate in this contribution is to understand how genetic information and external factors combine to create an organism, and conversely, how the genome has learned in the course of evolution how to harness the environment, and analogously, how coding, regulation and spatial organization interact in cellular processes.
126 - Jurgen Jost , Jingyong Zhu 2020
We study the existence of harmonic maps and Dirac-harmonic maps from degenerating surfaces to non-positive curved manifold via the scheme of Sacks and Uhlenbeck. By choosing a suitable sequence of $alpha$-(Dirac-)harmonic maps from a sequence of suit able closed surfaces degenerating to a hyperbolic surface, we get the convergence and a cleaner energy identity under the uniformly bounded energy assumption. In this energy identity, there is no energy loss near the punctures. As an application, we obtain an existence result about (Dirac-)harmonic maps from degenerating (spin) surfaces. If the energies of the map parts also stay away from zero, which is a necessary condition, both the limiting harmonic map and Dirac-harmonic map are nontrivial.
We introduce new definitions of sectional, Ricci and scalar curvature for networks and their higher dimensional counterparts, derived from two classical notions of curvature for curves in general metric spaces, namely, the Menger curvature and the Ha antjes curvature. These curvatures are applicable to unweighted or weighted and undirected or directed networks, and are more intuitive and easier to compute than other network curvatures. In particular, the proposed curvatures based on the interpretation of Haantjes definition as geodesic curvature allow us to give a network analogue of the classical local Gauss-Bonnet theorem. Furthermore, we propose even simpler and more intuitive proxies for the Haantjes curvature that allow for even faster and easier computations in large-scale networks. In addition, we also investigate the embedding properties of the proposed Ricci curvatures. Lastly, we also investigate the behaviour, both on model and real-world networks, of the curvatures introduced herein with more established notions of Ricci curvature and other widely-used network measures.
In the study of dynamical systems on networks/graphs, a key theme is how the network topology influences stability for steady states or synchronized states. Ideally, one would like to derive conditions for stability or instability that instead of mic roscopic details of the individual nodes/vertices rather make the influence of the network coupling topology visible. The master stability function is an important such tool to achieve this goal. Here we generalize the master stability approach to hypergraphs. A hypergraph coupling structure is important as it allows us to take into account arbitrary higher-order interactions between nodes. As for instance in the theory of coupled map lattices, we study Laplace type interaction structures in detail. Since the spectral theory of Laplacians on hypergraphs is richer than on graphs, we see the possibility of new dynamical phenomena. More generally, our arguments provide a blueprint for how to generalize dynamical structures and results from graphs to hypergraphs.
We study the measure of unique information $UI(T:Xsetminus Y)$ defined by Bertschinger et al. (2014) within the framework of information decompositions. We study uniqueness and support of the solutions to the optimization problem underlying the defin ition of $UI$. We identify sufficient conditions for non-uniqueness of solutions with full support in terms of conditional independence constraints and in terms of the cardinalities of $T$, $X$ and $Y$. Our results are based on a reformulation of the first order conditions on the objective function as rank constraints on a matrix of conditional probabilities. These results help to speed up the computation of $UI(T:Xsetminus Y)$, most notably when $T$ is binary. In the case that all variables are binary, we obtain a complete picture of where the optimizing probability distributions lie.
153 - Jurgen Jost , Jingyong Zhu 2019
In this paper, we discuss the general existence theory of Dirac-harmonic maps from closed surfaces via the heat flow for $alpha$-Dirac-harmonic maps and blow-up analysis. More precisely, given any initial map along which the Dirac operator has nontri vial minimal kernel, we first prove the short time existence of the heat flow for $alpha$-Dirac-harmonic maps. The obstacle to the global existence is the singular time when the kernel of the Dirac operator no longer stays minimal along the flow. In this case, the kernel may not be continuous even if the map is smooth with respect to time. To overcome this issue, we use the analyticity of the target manifold to obtain the density of the maps along which the Dirac operator has minimal kernel in the homotopy class of the given initial map. Then, when we arrive at the singular time, this density allows us to pick another map which has lower energy to restart the flow. Thus, we get a flow which may not be continuous at a set of isolated points. Furthermore, with the help of small energy regularity and blow-up analysis, we finally get the existence of nontrivial $alpha$-Dirac-harmonic maps ($alphageq1$) from closed surfaces. Moreover, if the target manifold does not admit any nontrivial harmonic sphere, then the map part stays in the same homotopy class as the given initial map.
Transfer entropy is an established method for quantifying directed statistical dependencies in neuroimaging and complex systems datasets. The pairwise (or bivariate) transfer entropy from a source to a target node in a network does not depend solely on the local source-target link weight, but on the wider network structure that the link is embedded in. This relationship is studied using a discrete-time linearly-coupled Gaussian model, which allows us to derive the transfer entropy for each link from the network topology. It is shown analytically that the dependence on the directed link weight is only a first approximation, valid for weak coupling. More generally, the transfer entropy increases with the in-degree of the source and decreases with the in-degree of the target, indicating an asymmetry of information transfer between hubs and low-degree nodes. In addition, the transfer entropy is directly proportional to weighted motif counts involving common parents or multiple walks from the source to the target, which are more abundant in networks with a high clustering coefficient than in random networks. Our findings also apply to Granger causality, which is equivalent to transfer entropy for Gaussian variables. Moreover, similar empirical results on random Boolean networks suggest that the dependence of the transfer entropy on the in-degree extends to nonlinear dynamics.
A result of B.Solomon (On the Gauss map of an area-minimizing hypersurface. 1984. Journal of Differential Geometry, 19(1), 221-232.) says that a compact minimal hypersurface $M^k$ of the sphere $S^{k+1}$ with $H^1(M)=0$, whose Gauss map omits a neigh borhood of an $S^{k-1}$ equator, is totally geodesic in $S^{k+1}$. We develop a new proof strategy which can also obtain an analogous result for codimension 2 compact minimal submanifolds of $S^{k+1}$.
In this paper, we develop the blow-up analysis and establish the energy quantization for solutions to super-Liouville type equations on Riemann surfaces with conical singularities at the boundary. In other problems in geometric analysis, the blow-up analysis usually strongly utilizes conformal invariance, which yields a Noether current from which strong estimates can be derived. Here, however, the conical singularities destroy conformal invariance. Therefore, we develop another, more general, method that uses the vanishing of the Pohozaev constant for such solutions to deduce the removability of boundary singularities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا