ترغب بنشر مسار تعليمي؟ اضغط هنا

In massive multiple-input multiple-output (MIMO) systems, it may not be power efficient to have a high-resolution analog-to-digital converter (ADC) for each antenna element. In this paper, a near maximum likelihood (nML) detector for uplink multiuser massive MIMO systems is proposed where each antenna is connected to a pair of one-bit ADCs, i.e., one for each real and imaginary component of the baseband signal. The exhaustive search over all the possible transmitted vectors required in the original maximum likelihood (ML) detection problem is relaxed to formulate an ML estimation problem. Then, the ML estimation problem is converted into a convex optimization problem which can be efficiently solved. Using the solution, the base station can perform simple symbol-by-symbol detection for the transmitted signals from multiple users. To further improve detection performance, we also develop a two-stage nML detector that exploits the structures of both the original ML and the proposed (one-stage) nML detectors. Numerical results show that the proposed nML detectors are efficient enough to simultaneously support multiple uplink users adopting higher-order constellations, e.g., 16 quadrature amplitude modulation. Since our detectors exploit the channel state information as part of the detection, an ML channel estimation technique with one-bit ADCs that shares the same structure with our proposed nML detector is also developed. The proposed detectors and channel estimator provide a complete low power solution for the uplink of a massive MIMO system.
The Internet of Things (IoT) could enable the development of cloud multiple-input multiple-output (MIMO) systems where internet-enabled devices can work as distributed transmission/reception entities. We expect that spatial multiplexing with distribu ted reception using cloud MIMO would be a key factor of future wireless communication systems. In this paper, we first review practical receivers for distributed reception of spatially multiplexed transmit data where the fusion center relies on quantized received signals conveyed from geographically separated receive nodes. Using the structures of these receivers, we propose practical channel estimation techniques for the block-fading scenario. The proposed channel estimation techniques rely on very simple operations at the received nodes while achieving near-optimal channel estimation performance as the training length becomes large.
The Internet of things (IoT) holds much commercial potential and could facilitate distributed multiple-input multiple-output (MIMO) communication in future systems. We study a distributed reception scenario in which a transmitter equipped with multip le antennas sends multiple streams via spatial multiplexing to a large number of geographically separated single antenna receive nodes. The receive nodes then quantize their received signals and forward the quantized received signals to a receive fusion center. With global channel knowledge and forwarded quantized information from the receive nodes, the fusion center attempts to decode the transmitted symbols. We assume the transmit vector consists of phase shift keying (PSK) constellation points, and each receive node quantizes its received signal with one bit for each of the real and imaginary parts of the signal to minimize the transmission overhead between the receive nodes and the fusion center. Fusing this data is a non-trivial problem because the receive nodes cannot decode the transmitted symbols before quantization. Instead, each receive node processes a single quantity, i.e., the received signal, regardless of the number of transmitted symbols. We develop an optimal maximum likelihood (ML) receiver and a low-complexity zero-forcing (ZF)-type receiver at the fusion center. Despite its suboptimality, the ZF-type receiver is simple to implement and shows comparable performance with the ML receiver in the low signal-to-noise ratio (SNR) regime but experiences an error rate floor at high SNR. It is shown that this error floor can be overcome by increasing the number of receive nodes. Hence, the ZF-type receiver would be a practical solution for distributed reception with spatial multiplexing in the era of the IoT where we can easily have a large number of receive nodes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا