ترغب بنشر مسار تعليمي؟ اضغط هنا

Fabricating van der Waals (vdW) bilayer heterostructures (BL-HS) by stacking the same or different two-dimensional (2D) layers, offers a unique physical system with rich electronic and optical properties. Twist-angle between component layers has emer ged as a remarkable parameter that can control the period of lateral confinement, and nature of the exciton (Coulomb bound electron-hole pair) in reciprocal space thus creating exotic physical states including moire excitons. In this review article, we focus on opto-electronic properties of excitons in transition metal dichalcogenide (TMD) semiconductor twisted BL-HS. We look at existing evidence of moire excitons in localized and strongly correlated states, and at nanoscale mapping of moire superlattice and lattice-reconstruction. This review will be helpful in guiding the community as well as motivating work in areas such as near-field optical measurements and controlling the creation of novel physical states.
In van der Waals (vdW) heterostructures formed by stacking two monolayers of transition metal dichalcogenides, multiple exciton resonances with highly tunable properties are formed and subject to both vertical and lateral confinement. We investigate how a unique control knob, the twist angle between the two monolayers, can be used to control the exciton dynamics. We observe that the interlayer exciton lifetimes in $text{MoSe}_{text{2}}$/$text{WSe}_{text{2}}$ twisted bilayers (TBLs) change by one order of magnitude when the twist angle is varied from 1$^circ$ to 3.5$^circ$. Using a low-energy continuum model, we theoretically separate two leading mechanisms that influence interlayer exciton radiative lifetimes. The shift to indirect transitions in the momentum space with an increasing twist angle and the energy modulation from the moire potential both have a significant impact on interlayer exciton lifetimes. We further predict distinct temperature dependence of interlayer exciton lifetimes in TBLs with different twist angles, which is partially validated by experiments. While many recent studies have highlighted how the twist angle in a vdW TBL can be used to engineer the ground states and quantum phases due to many-body interaction, our studies explore its role in controlling the dynamics of optically excited states, thus, expanding the conceptual applications of twistronics.
The properties of van der Waals (vdW) heterostructures are drastically altered by a tunable moire superlattice arising from periodic variations of atomic alignment between the layers. Exciton diffusion represents an important channel of energy transp ort in semiconducting transition metal dichalcogenides (TMDs). While early studies performed on TMD heterobilayers have suggested that carriers and excitons exhibit long diffusion lengths, a rich variety of scenarios can exist. In a moire crystal with a large supercell size and deep potential, interlayer excitons may be completely localized. As the moire period reduces at a larger twist angle, excitons can tunnel between supercells and diffuse over a longer lifetime. The diffusion length should be the longest in commensurate heterostructures where the moire superlattice is completely absent. In this study, we experimentally demonstrate that the moire potential impedes interlayer exciton diffusion by comparing a number of WSe2/MoSe2 heterostructures prepared with chemical vapor deposition and mechanical stacking with accurately controlled twist angles. Our results provide critical guidance to developing twistronic devices that explore the moire superlattice to engineer material properties.
Epitaxial growth of single crystalline noble metals on dielectric substrates has received tremendous attention recently due to their technological potentials as low loss plasmonic materials. Currently there are two different growth approaches, each w ith its strengths and weaknesses. One adopts a sophisticated molecular beam epitaxial procedure to grow atomically smooth epitaxial Ag films. However, the procedure is rather slow and becomes impractical to grow films with thickness > 50 nm. Another approach adopts a growth process using rapid e-beam deposition which is capable of growing single crystalline Ag films in the thick regime (> 300 nm). However, the rapid growth procedure makes it difficult to control film thickness precisely, i.e., the method is not applicable to growing thin epitaxial films. Here we report a universal approach to grow atomically smooth epitaxial Ag films with precise thickness control from a few monolayers to the optically thick regime, overcoming the limitations of the two aforementioned methods. In addition, we develop an in-situ growth of aluminum oxide as the capping layer which exhibits excellent properties protecting the epitaxial Ag films. The performance of the epitaxial Ag films as a function of the film thickness is investigated by directly measuring the propagation length of the surface plasmon polaritons (SPPs) as well as their device performance to support a waveguide plasmonic nanolaser in infrared incorporating an InGaAsP quantum well as the gain media.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا