ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr1-xLax)3Ir2O7. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on th e energy and polarization of the incident photons, these pockets show up in the form of disconnected Fermi arcs, reminiscent of those reported recently in surface electron-doped Sr2IrO4. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.
Negative compressibility is a sign of thermodynamic instability of open or non-equilibrium systems. In quantum materials consisting of multiple mutually coupled subsystems, the compressibility of one subsystem can be negative if it is countered by po sitive compressibility of the others. Manifestations of this effect have so far been limited to low-dimensional dilute electron systems. Here we present evidence from angle-resolved photoemission spectroscopy (ARPES) for negative electronic compressibility (NEC) in the quasi-three-dimensional (3D) spin-orbit correlated metal (Sr1-xLax)3Ir2O7. Increased electron filling accompanies an anomalous decrease of the chemical potential, as indicated by the overall movement of the deep valence bands. Such anomaly, suggestive of NEC, is shown to be primarily driven by the lowering in energy of the conduction band as the correlated bandgap reduces. Our finding points to a distinct pathway towards an uncharted territory of NEC featuring bulk correlated metals with unique potential for applications in low-power nanoelectronics and novel metamaterials.
253 - Junfeng He , Xu Liu , Wenhao Zhang 2014
In high temperature cuprate superconductors, it is now generally agreed that the parent compound is a Mott insulator and superconductivity is realized by doping the antiferromagnetic Mott insulator. In the iron-based superconductors, however, the par ent compound is mostly antiferromagnetic metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. It has been proposed theoretically that the parent compound of the iron-based superconductors may be on the verge of a Mott insulator, but so far no clear experimental evidence of doping-induced Mott transition has been available. Here we report an electronic evidence of an insulator-superconductor transition observed in the single-layer FeSe films grown on the SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with the increasing doping. This observation represents the first example of an insulator-superconductor transition via doping observed in the iron-based superconductors. It indicates that the parent compound of the iron-based superconductors is in proximity of a Mott insulator and strong electron correlation should be considered in describing the iron-based superconductors.
Super-high resolution laser-based angle-resolved photoemission measurements have been carried out on Bi2Sr2CaCu2O8+d (Bi2212) superconductors to investigate momentum dependence of electron coupling with collective excitations (modes). Two coexisting energy scales are clearly revealed over a large momentum space for the first time in the superconducting state of an overdoped Bi2212 superconductor. These two energy scales exhibit distinct momentum dependence: one keeps its energy near 78 meV over a large momentum space while the other changes its energy from $sim$40 meV near the antinodal region to $sim$70 meV near the nodal region. These observations provide a new picture on momentum evolution of electron-boson coupling in Bi2212 that electrons are coupled with two sharp modes simultaneously over a large momentum space in the superconducting states. Their unusual momentum dependence poses a challenge to our current understanding of electron-mode-coupling and its role for high temperature superconductivity in cuprate superconductors.
Superconductivity in the cuprate superconductors and the Fe-based superconductors is realized by doping the parent compound with charge carriers, or by application of high pressure, to suppress the antiferromagnetic state. Such a rich phase diagram i s important in understanding superconductivity mechanism and other physics in the Cu- and Fe-based high temperature superconductors. In this paper, we report a phase diagram in the single-layer FeSe films grown on SrTiO3 substrate by an annealing procedure to tune the charge carrier concentration over a wide range. A dramatic change of the band structure and Fermi surface is observed, with two distinct phases identified that are competing during the annealing process. Superconductivity with a record high transition temperature (Tc) at ~65 K is realized by optimizing the annealing process. The wide tunability of the system across different phases, and its high-Tc, make the single-layer FeSe film ideal not only to investigate the superconductivity physics and mechanism, but also to study novel quantum phenomena and for potential applications.
111 - Junfeng He 2012
Fast approximate nearest neighbor (NN) search in large databases is becoming popular. Several powerful learning-based formulations have been proposed recently. However, not much attention has been paid to a more fundamental question: how difficult is (approximate) nearest neighbor search in a given data set? And which data properties affect the difficulty of nearest neighbor search and how? This paper introduces the first concrete measure called Relative Contrast that can be used to evaluate the influence of several crucial data characteristics such as dimensionality, sparsity, and database size simultaneously in arbitrary normed metric spaces. Moreover, we present a theoretical analysis to prove how the difficulty measure (relative contrast) determines/affects the complexity of Local Sensitive Hashing, a popular approximate NN search method. Relative contrast also provides an explanation for a family of heuristic hashing algorithms with good practical performance based on PCA. Finally, we show that most of the previous works in measuring NN search meaningfulness/difficulty can be derived as special asymptotic cases for dense vectors of the proposed measure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا