ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, Galindo et al. introduced the concept of asymmetric entanglement-assisted quantum error-correcting codes (AEAQECCs) from Calderbank-Shor-Steane (CSS) construction. In general, its difficult to determine the required number of maximally enta ngled states of an AEAQECC, which is associated with the dimension of the intersection of the two corresponding linear codes. Two linear codes are said to be a linear l-intersection pair if their intersection has dimension l. In this paper, all possible linear l-intersection pairs of MDS codes are given. As an application, we give a complete characterization of pure MDS AEAQECCs for all possible parameters.
Thermodynamics plays an important role in gravitational theories. It is a principle independent of the gravitational dynamics, and there is still no rigorous proof to show that it is consistent with the dynamical principle. We consider a self-gravita ting perfect fluid system in a general diffeomorphism-covariant purely gravitational theory. Based on the Noether charge method proposed by Iyer and Wald, considering static off/on-shell variational configurations which satisfy the gravitational constraint equation, we rigorously prove that the extrema of the total entropy of perfect fluid inside a compact region for fixed total particle number demands that the static configuration is an on-shell solution after we introduce some appropriate boundary conditions, i.e., it also satisfies the spatial gravitational equations. This means that the entropy principle of the fluid stores the same information as the gravitational equation in a static configuration. Our proof is universal and holds for any diffeomorphism-covariant purely gravitational theories, such as Einstein gravity, f(R) gravity, Lovelock gravity, f(Gauss-Bonnet) gravity and Einstein-Weyl gravity. Our result shows the consistency between the ordinary thermodynamics and the gravitational dynamics.
Using relativistic mean-field models, the formation of clusterized matter, as the one expected to exist in the inner crust of neutron stars, is determined under the effect of strong magnetic fields. As already predicted from a calculation of the unst able modes resulting from density fluctuations at subsaturation densities, we confirm in the present work that for magnetic field intensities of the order of $approx 5 times 10^{16}$ G to $5 times 10^{17}$ G, pasta phases may occur for densities well above the zero-field crust-core transition density. This confirms that the extension of the crust may be larger than expected. It is also verified that the equilibrium structure of the clusterized matter is very sensitive to the intensity of the magnetic fields. As a result, the decay of the magnetic field may give rise to internal stresses which may result on the yield and fracture of the inner crust lattice.
91 - Jun Fang , Bin Wang , Hongbin Li 2021
Cognitive radio (CR) is a promising technology enabling efficient utilization of the spectrum resource for future wireless systems. As future CR networks are envisioned to operate over a wide frequency range, advanced wideband spectrum sensing (WBSS) capable of quickly and reliably detecting idle spectrum bands across a wide frequency span is essential. In this article, we provide an overview of recent advances on sub-Nyquist sampling-based WBSS techniques, including compressed sensing-based methods and compressive covariance sensing-based methods. An elaborate discussion of the pros and cons of each approach is presented, along with some challenging issues for future research. A comparative study suggests that the compressive covariance sensing-based approach offers a more competitive solution for reliable real-time WBSS.
The entropy principle shows that, for self-gravitating perfect fluid, the Einstein field equations can be derived from the extrema of the total entropy, and the thermodynamical stability criterion are equivalent to the dynamical stability criterion. In this paper, we recast the dynamical criterion for the charged self-gravitating perfect fluid in Einstein-Maxwell theory, and further give the criterion of the star with barotropic condition. In order to obtain the thermodynamical stability criterion, first we get the general formula of the second variation of the total entropy for charged perfect fluid case, and then obtain the thermodynamical criterion for radial perturbation. We show that these two stability criterion are the same, which suggest that the inherent connection between gravity and thermodynamic even when the electric field is taken into account.
The parameters of MDS self-dual codes are completely determined by the code length. In this paper, we utilize generalized Reed-Solomon (GRS) codes and extended GRS codes to construct MDS self-dual (self-orthogonal) codes and MDS almost self-dual code s over. The main idea of our constructions is to choose suitable evaluation points such that the corresponding (extended) GRS codes are Euclidean self-dual (self-orthogonal). The evaluation sets are consists of two subsets which satisfy some certain conditions and the length of these codes can be expressed as a linear combination of two factors of q-1. Four families of MDS self-dual codes, two families of MDS self-orthogonal codes and two families of MDS almost self-dual codes are obtained and they have new parameters.
Intelligent reflecting surface (IRS) has emerged as a competitive solution to address blockage issues in millimeter wave (mmWave) and Terahertz (THz) communications due to its capability of reshaping wireless transmission environments. Nevertheless, obtaining the channel state information of IRS-assisted systems is quite challenging because of the passive characteristics of the IRS. In this paper, we consider the problem of beam training/alignment for IRS-assisted downlink mmWave/THz systems, where a multi-antenna base station (BS) with a hybrid structure serves a single-antenna user aided by IRS. By exploiting the inherent sparse structure of the BS-IRS-user cascade channel, the beam training problem is formulated as a joint sparse sensing and phaseless estimation problem, which involves devising a sparse sensing matrix and developing an efficient estimation algorithm to identify the best beam alignment from compressive phaseless measurements. Theoretical analysis reveals that the proposed method can identify the best alignment with only a modest amount of training overhead. Simulation results show that, for both line-of-sight (LOS) and NLOS scenarios, the proposed method obtains a significant performance improvement over existing state-of-art methods. Notably, it can achieve performance close to that of the exhaustive beam search scheme, while reducing the training overhead by 95%.
In this paper, we systematically study gravitational waves (GWs) produced by remote compact astrophysical sources. To describe such GWs properly, we introduce three scales, $lambda, ; L_c$ and $L$, denoting, respectively, the typical wavelength of GW s, the scale of the cosmological perturbations, and the size of the observable universe. For GWs to be detected by the current and foreseeable detectors, the condition $lambda ll L_c ll L$ holds, and such GWs can be well approximated as high-frequency GWs. In order for the backreaction of the GWs to the background to be negligible, we must assume that $left|h_{mu u}right| ll 1$, in addition to the condition $epsilon ll 1$, which are also the conditions for the linearized Einstein field equations for $h_{mu u}$ to be valid, where $g_{mu u} = gamma_{mu u} + epsilon h_{mu u}$, and $gamma_{mu u}$ denotes the background. To simplify the field equations, we show that the spatial, traceless, and Lorentz gauge conditions can be imposed simultaneously, even when the background is not vacuum, as long as the high-frequency GW approximation is valid. However, to develop the formulas that can be applicable to as many cases as possible, we first write down explicitly the linearized Einstein field equations by imposing only the spatial gauge. Applying the general formulas together with the geometrical optics approximation to such GWs, we find that they still move along null geodesics and its polarization bi-vector is parallel-transported, even when both the cosmological scalar and tensor perturbations are present. In addition, we also calculate the gravitational integrated Sachs-Wolfe effects, whereby the dependences of the amplitude, phase and luminosity distance of the GWs on these two kinds of perturbations are read out explicitly.
By reconfiguring the propagation environment of electromagnetic waves artificially, reconfigurable intelligent surfaces (RISs) have been regarded as a promising and revolutionary hardware technology to improve the energy and spectrum efficiency of wi reless networks. In this paper, we study a RIS aided multiuser multiple-input multiple-output (MIMO) wireless power transfer (WPT) system, where the transmitter is equipped with a constant-envelope analog beamformer. First, we maximize the total received power of the users by jointly optimizing the beamformer at transmitter and the phase-shifts at the RIS, and propose two alternating optimization based suboptimal solutions by leveraging the semidefinite relaxation (SDR) and the successive convex approximation (SCA) techniques respectively. Then, considering the user fairness, we formulate another problem to maximize the total received power subject to the users individual minimum received power constraints. A low complexity iterative algorithm based on both alternating direction method of multipliers (ADMM) and SCA techniques is proposed to solve this problem. In the case of multiple users, we further analyze the asymptotic performance as the number of RIS elements approaches infinity, and bound the performance loss caused by RIS phase quantization. Numerical results show the correctness of the analysis results and the effectiveness of the proposed algorithms.
Large intelligent surface (LIS) has recently emerged as a potential low-cost solution to reshape the wireless propagation environment for improving the spectral efficiency. In this paper, we consider a downlink millimeter-wave (mmWave) multiple-input -multiple-output (MIMO) system, where an LIS is deployed to assist the downlink data transmission from a base station (BS) to a user equipment (UE). Both the BS and the UE are equipped with a large number of antennas, and a hybrid analog/digital precoding/combining structure is used to reduce the hardware cost and energy consumption. We aim to maximize the spectral efficiency by jointly optimizing the LISs reflection coefficients and the hybrid precoder (combiner) at the BS (UE). To tackle this non-convex problem, we reformulate the complex optimization problem into a much more friendly optimization problem by exploiting the inherent structure of the effective (cascade) mmWave channel. A manifold optimization (MO)-based algorithm is then developed. Simulation results show that by carefully devising LISs reflection coefficients, our proposed method can help realize a favorable propagation environment with a small channel matrix condition number. Besides, it can achieve a performance comparable to those of state-of-the-art algorithms, while at a much lower computational complexity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا