ترغب بنشر مسار تعليمي؟ اضغط هنا

We estimate the spin relaxation rate due to spin-orbit coupling and acoustic phonon scattering in weakly-confined quantum dots with up to five interacting electrons. The Full Configuration Interaction approach is used to account for the inter-electro n repulsion, and Rashba and Dresselhaus spin-orbit couplings are exactly diagonalized. We show that electron-electron interaction strongly affects spin-orbit admixture in the sample. Consequently, relaxation rates strongly depend on the number of carriers confined in the dot. We identify the mechanisms which may lead to improved spin stability in few electron (>2) quantum dots as compared to the usual one and two electron devices. Finally, we discuss recent experiments on triplet-singlet transitions in GaAs dots subject to external magnetic fields. Our simulations are in good agreement with the experimental findings, and support the interpretation of the observed spin relaxation as being due to spin-orbit coupling assisted by acoustic phonon emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا