ترغب بنشر مسار تعليمي؟ اضغط هنا

We give an intuitive though general explanation of the finite-size effect in scale-free networks in terms of the degree distribution of the starting network. This result clarifies the relevance of the starting network in the final degree distribution . We use two different approaches: the deterministic mean-field approximation used by Barabasi and Albert (but taking into account the nodes of the starting network), and the probability distribution of the degree of each node, which considers the stochastic process. Numerical simulations show that the accuracy of the predictions of the mean-field approximation depend on the contribution of the dispersion in the final distribution. The results in terms of the probability distribution of the degree of each node are very accurate when compared to numerical simulations. The analysis of the standard deviation of the degree distribution allows us to assess the influence of the starting core when fitting the model to real data.
The class of loop spaces whose mod p cohomology is Noetherian is much larger than the class of p-compact groups (for which the mod p cohomology is required to be finite). It contains Eilenberg-Mac Lane spaces such as the infinite complex projective s pace and 3-connected covers of compact Lie groups. We study the cohomology of the classifying space BX of such an object and prove it is as small as expected, that is, comparable to that of BCP^infty. We also show that BX differs basically from the classifying space of a p-compact group in a single homotopy group. This applies in particular to 4-connected covers of classifying spaces of Lie groups and sheds new light on how the cohomology of such an object looks like.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا