ترغب بنشر مسار تعليمي؟ اضغط هنا

The separation of the faint cosmological background signal from bright astrophysical foregrounds remains one of the most daunting challenges of mapping the high-redshift intergalactic medium with the redshifted 21 cm line of neutral hydrogen. Advance s in mapping and modeling of diffuse and point source foregrounds have improved subtraction accuracy, but no subtraction scheme is perfect. Precisely quantifying the errors and error correlations due to missubtracted foregrounds allows for both the rigorous analysis of the 21 cm power spectrum and for the maximal isolation of the EoR window from foreground contamination. We present a method to infer the covariance of foreground residuals from the data itself in contrast to previous attempts at a priori modeling. We demonstrate our method by setting limits on the power spectrum using a 3 h integration from the 128-tile Murchison Widefield Array. Observing between 167 and 198 MHz, we find at 95% confidence a best limit of Delta^2(k) < 3.7 x 10^4 mK^2 at comoving scale k = 0.18 hMpc^-1 and at z = 6.8, consistent with existing limits.
A number of experiments are currently working towards a measurement of the 21 cm signal from the Epoch of Reionization. Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from pr oviding detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by a next-generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the $sim 0.1~rm{km}^2$ collecting area Hydrogen Epoch of Reionization Array (HERA) concept design, and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described wedge footprint in k-space. Uncertainties in the reionization history are accounted for using a series of simulations which vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the IGM. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that $0.1~rm{km}^2$ of collecting area is enough to ensure a very high significance ($gtrsim30sigma$) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.
We present techniques for bridging the gap between idealized inverse covariance weighted quadratic estimation of 21 cm power spectra and the real-world challenges presented universally by interferometric observation. By carefully evaluating various e stimators and adapting our techniques for large but incomplete data sets, we develop a robust power spectrum estimation framework that preserves the so-called EoR window and keeps track of estimator errors and covariances. We apply our method to observations from the 32-tile prototype of the Murchinson Widefield Array to demonstrate the importance of a judicious analysis technique. Lastly, we apply our method to investigate the dependence of the clean EoR window on frequency--especially the frequency dependence of the so-called wedge feature--and establish upper limits on the power spectrum from z = 6.2 to z = 11.7. Our lowest limit is Delta(k) < 0.3 Kelvin at 95% confidence at a comoving scale k = 0.046 Mpc^-1 and z = 9.5.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا