ترغب بنشر مسار تعليمي؟ اضغط هنا

Empirical Covariance Modeling for 21 cm Power Spectrum Estimation: A Method Demonstration and New Limits from Early Murchison Widefield Array 128-Tile Data

36   0   0.0 ( 0 )
 نشر من قبل Joshua Dillon
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The separation of the faint cosmological background signal from bright astrophysical foregrounds remains one of the most daunting challenges of mapping the high-redshift intergalactic medium with the redshifted 21 cm line of neutral hydrogen. Advances in mapping and modeling of diffuse and point source foregrounds have improved subtraction accuracy, but no subtraction scheme is perfect. Precisely quantifying the errors and error correlations due to missubtracted foregrounds allows for both the rigorous analysis of the 21 cm power spectrum and for the maximal isolation of the EoR window from foreground contamination. We present a method to infer the covariance of foreground residuals from the data itself in contrast to previous attempts at a priori modeling. We demonstrate our method by setting limits on the power spectrum using a 3 h integration from the 128-tile Murchison Widefield Array. Observing between 167 and 198 MHz, we find at 95% confidence a best limit of Delta^2(k) < 3.7 x 10^4 mK^2 at comoving scale k = 0.18 hMpc^-1 and at z = 6.8, consistent with existing limits.

قيم البحث

اقرأ أيضاً

We present techniques for bridging the gap between idealized inverse covariance weighted quadratic estimation of 21 cm power spectra and the real-world challenges presented universally by interferometric observation. By carefully evaluating various e stimators and adapting our techniques for large but incomplete data sets, we develop a robust power spectrum estimation framework that preserves the so-called EoR window and keeps track of estimator errors and covariances. We apply our method to observations from the 32-tile prototype of the Murchinson Widefield Array to demonstrate the importance of a judicious analysis technique. Lastly, we apply our method to investigate the dependence of the clean EoR window on frequency--especially the frequency dependence of the so-called wedge feature--and establish upper limits on the power spectrum from z = 6.2 to z = 11.7. Our lowest limit is Delta(k) < 0.3 Kelvin at 95% confidence at a comoving scale k = 0.046 Mpc^-1 and z = 9.5.
We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen a t redshifts between 6 and 12. Multiple, independent, data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.
Observation of the 21cm line signal from neutral hydrogen during the Epoch of Reionization is challenging due to extremely bright Galactic and extragalactic foregrounds and complicated instrumental calibration. A reasonable approach for mitigating th ese problems is the cross correlation with other observables. In this work, we present the first results of the cross power spectrum (CPS) between radio images observed by the Murchison Widefield Array and the cosmic microwave background (CMB), measured by the Planck experiment. We study the systematics due to the ionospheric activity, the dependence of CPS on group of pointings, and frequency. The resulting CPS is consistent with zero because the error is dominated by the foregrounds in the 21cm observation. Additionally, the variance of the signal indicates the presence of unexpected systematics error at small scales. Furthermore, we reduce the error by one order of magnitude with application of a foreground removal using a polynomial fitting method. Based on the results, we find that the detection of the 21cm-CMB CPS with the MWA Phase I requires more than 99.95% of the foreground signal removed, 2000 hours of deep observation and 50% of the sky fraction coverage.
Low-frequency, wide field-of-view (FoV) radio telescopes such as the Murchison Widefield Array (MWA) enable the ionosphere to be sampled at high spatial completeness. We present the results of the first power spectrum analysis of ionospheric fluctuat ions in MWA data, where we examined the position offsets of radio sources appearing in two datasets. The refractive shifts in the positions of celestial sources are proportional to spatial gradients in the electron column density transverse to the line of sight. These can be used to probe plasma structures and waves in the ionosphere. The regional (10-100 km) scales probed by the MWA, determined by the size of its FoV and the spatial density of radio sources (typically thousands in a single FoV), complement the global (100-1000 km) scales of GPS studies and local (0.01-1 km) scales of radar scattering measurements. Our data exhibit a range of complex structures and waves. Some fluctuations have the characteristics of travelling ionospheric disturbances (TIDs), while others take the form of narrow, slowly-drifting bands aligned along the Earths magnetic field.
54 - Adam Lidz 2007
We forecast the sensitivity with which the Murchison Widefield Array (MWA) can measure the 21 cm power spectrum of cosmic hydrogen, using radiative transfer simulations to model reionization and the 21 cm signal. The MWA is sensitive to roughly a dec ade in scale (wavenumbers of k ~ 0.1 - 1 h Mpc^{-1}), with foreground contamination precluding measurements on larger scales, and thermal detector noise limiting the small scale sensitivity. This amounts primarily to constraints on two numbers: the amplitude and slope of the 21 cm power spectrum on the scales probed. We find, however, that the redshift evolution in these quantities can yield important information about reionization. Although the power spectrum differs substantially across plausible models, a generic prediction is that the amplitude of the 21 cm power spectrum on MWA scales peaks near the epoch when the intergalactic medium (IGM) is ~ 50% ionized. Moreover, the slope of the 21 cm power spectrum on MWA scales flattens as the ionization fraction increases and the sizes of the HII regions grow. Considering detection sensitivity, we show that the optimal MWA antenna configuration for power spectrum measurements would pack all 500 antenna tiles as close as possible in a compact core. The MWA is sensitive enough in its optimal configuration to measure redshift evolution in the slope and amplitude of the 21 cm power spectrum. Detecting the characteristic redshift evolution of our models will confirm that observed 21 cm fluctuations originate from the IGM, and not from foregrounds, and provide an indirect constraint on the volume-filling factor of HII regions during reionization. After two years of observations under favorable conditions, the MWA can constrain the filling factor at an epoch when <x_i> ~ 0.5 to within roughly +/- 0.1 at 2-sigma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا