ترغب بنشر مسار تعليمي؟ اضغط هنا

In quantum computing architectures, one important factor is the trade-off between the need to couple qubits to each other and to an external drive and the need to isolate them well enough in order to protect the information for an extended period of time. In the case of superconducting circuits, one approach is to utilize fixed frequency qubits coupled to coplanar waveguide resonators such that the system can be kept in a configuration that is relatively insensitive to noise. Here, we propose a scalable voltage-tunable quantum memory (QuMem) design concept compatible with superconducting qubit platforms. Our design builds on the recent progress in fabrication of Josephson field effect transistors (JJ-FETs) which use InAs quantum wells. The JJ-FET is incorporated into a tunable coupler between a transmission line and a high-quality resonator in order to control the overall inductance of the coupler. A full isolation of the high-quality resonator can be achieved by turning off the JJ-FET. This could allow for long coherence times and protection of the quantum information inside the storage cavity. The proposed design would facilitate the implementation of random access memory for storage of quantum information in between computational gate operations.
Near surface indium arsenide quantum wells have recently attracted a great deal of interest since they can be interfaced epitaxially with superconducting films and have proven to be a robust platform for exploring mesoscopic and topological supercond uctivity. In this work, we present magnetotransport properties of two-dimensional electron gases confined to an indium arsenide quantum well near the surface. The electron mass extracted from the envelope of the Shubnikov-de Haas oscillations shows an average effective mass $m^{*}$ = 0.04 at low magnetic field. Complementary to our magnetotransport study, we employed cyclotron resonance measurements and extracted the electron effective mass in the ultra high magnetic field regime. Our measurements show that the effective mass depends on magnetic field in this regime. The data can be understood by considering a model that includes non-parabolicity of the indium arsenide conduction bands.
We demonstrate robust superconducting proximity effect in InAs$_{0.5}$Sb$_{0.5}$ quantum wells grown with epitaxial Al contact, which has important implications for mesoscopic and topological superconductivity. Unlike more commonly studied InAs and I nSb semiconductors, bulk InAs$_{0.5}$Sb$_{0.5}$ supports stronger spin-orbit coupling and larger $g$-factor. However, these potentially desirable properties have not been previously measured in epitaxial heterostructures with superconductors, which could serve as a platform for fault-tolerant topological quantum computing. Through structural and transport characterization we observe high-quality interfaces and strong spin-orbit coupling. We fabricate Josephson junctions based on InAs$_{0.5}$Sb$_{0.5}$ quantum wells and observe strong proximity effect. These junctions exhibit product of normal resistance and critical current, $I_{c}R_{N} = SI{270}{micro V}$, and excess current, $I_{ex}R_{N} = SI{200}{micro V}$ at contact separations of 500~nm. Both of these quantities demonstrate a robust and long-range proximity effect with highly-transparent contacts.
Topological superconductivity holds promise for fault-tolerant quantum computing. While planar Josephson junctions are attractive candidates to realize this exotic state, direct phase-measurements as the fingerprint of the topological transition are missing. By embedding two gate-tunable Al/InAs Josephson junctions in a loop geometry, we measure a $pi$-jump in the junction phase with increasing in-plane magnetic field, ${bf B}_|$. This jump is accompanied by a minimum of the critical current, indicating a closing and reopening of the superconducting gap, strongly anisotropic in ${bf B}_|$. Our theory confirms that these signatures of a topological transition are compatible with the emergence of Majorana states.
In a standard Josephson junction the current is zero when the phase difference between the superconducting leads is zero. This condition is protected by parity and time-reversal symmetries. However, the combined presence of spin-orbit coupling and ma gnetic field breaks these symmetries and can lead to a finite supercurrent even when the phase difference is zero. This is the so called anomalous Josephson effect -- the hallmark effect of superconducting spintronics --and can be characterized by the corresponding anomalous phase shift ($phi_0$). We report the observation of a tunable anomalous Josephson effect in InAs/Al Josephson junctions measured via a superconducting quantum interference device (SQUID). By gate controlling the density of InAs we are able to tune the spin-orbit coupling of the Josephson junction by more than one order of magnitude. This gives us the ability to tune $phi_0$, and opens several new opportunities for superconducting spintronics, and new possibilities for realizing and characterizing topological superconductivity.
Semiconductor-based Josephson junctions provide a platform for studying proximity effect due to the possibility of tuning junction properties by gate voltage and large-scale fabrication of complex Josephson circuits. Recently Josephson junctions usin g InAs weak link with epitaxial aluminum contact have improved the product of normal resistance and critical current, $I_cR_N$, in addition to fabrication process reliability. Here we study similar devices with epitaxial contact and find large supercurrent and substantial product of $I_cR_N$ in our junctions. However we find a striking difference when we compare these samples with higher mobility samples in terms of product of excess current and normal resistance, $I_{ex}R_N$. The excess current is negligible in lower mobility devices while it is substantial and independent of gate voltage and junction length in high mobility samples. This indicates that even though both sample types have epitaxial contacts only the high-mobility one has a high transparency interface. In the high mobility short junctions, we observe values of $I_cR_N/Delta sim 2.2$ and $I_{ex}R_N/Delta sim 1.5$ in semiconductor weak links.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا