ترغب بنشر مسار تعليمي؟ اضغط هنا

We enhance the psyquandle counting invariant for singular knots and pseudoknots using quivers analogously to quandle coloring quivers. This enables us to extend the in-degree polynomial invariants from quandle coloring quiver theory to the case of si ngular knots and pseudoknots. As a side effect we obtain biquandle coloring quivers and in-degree polynomial invariants for classical and virtual knots and links.
In this short survey we review recent results dealing with algebraic structures (quandles, psyquandles, and singquandles) related to singular knot theory. We first explore the singquandles counting invariant and then consider several recent enhanceme nts to this invariant. These enhancements include a singquandle cocycle invariant and several polynomial invariants of singular knots obtained from the singquandle structure. We then explore psyquandles which can be thought of as generalizations of oriented signquandles, and review recent developments regarding invariants of singular knots obtained from psyquandles.
We introduce shadow structures for singular knot theory. Precisely, we define emph{two} invariants of singular knots and links. First, we introduce a notion of action of a singquandle on a set to define a shadow counting invariant of singular links w hich generalize the classical shadow colorings of knots by quandles. We then define a shadow polynomial invariant for shadow structures. Lastly, we enhance the shadow counting invariant by combining both the shadow counting invariant and the shadow polynomial invariant. Explicit examples of computations are given.
Folded linear molecular chains are ubiquitous in biology. Folding is mediated by intra-chain interactions that glue two or more regions of a chain. The resulting fold topology is widely believed to be a determinant of biomolecular properties and func tion. Recently, knot theory has been extended to describe the topology of folded linear chains such as proteins and nucleic acids. To classify and distinguish chain topologies, algebraic structure of quandles has been adapted and applied. However, the approach is limited as apparently distinct topologies may end up having the same number of colorings. Here, we enhance the resolving power of the quandle coloring approach by introducing Boltzmann weights. We demonstrate that the enhanced coloring invariants can distinguish fold topologies with an improved resolution.
We generalize the notion of the quandle polynomial to the case of singquandles. We show that the singquandle polynomial is an invariant of finite singquandles. We also construct a singular link invariant from the singquandle polynomial and show that this new singular link invariant generalizes the singquandle counting invariant. In particular, using the new polynomial invariant, we can distinguish singular links with the same singquandle counting invariant.
105 - Jose Ceniceros , Sam Nelson 2020
We bring cocycle enhancement theory to the case of psyquandles. Analogously to our previous work on virtual biquandle cocycle enhancements, we define enhancements of the psyquandle counting invariant via pairs of a biquandle 2-cocycle and a new funct ion satisfying some conditions. As an application we define new single-variable and two-variable polynomial invariants of oriented pseudoknots and singular knots and links. We provide examples to show that the new invariants are proper enhancements of the counting invariant are are not determined by the Jablan polynomial.
We extend the quandle cocycle invariant to oriented singular knots and links using algebraic structures called emph{oriented singquandles} and assigning weight functions at both regular and singular crossings. This invariant coincides with the classi cal cocycle invariant for classical knots but provides extra information about singular knots and links. The new invariant distinguishes the singular granny knot from the singular square knot.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا